
Manual Enertex® EibPC²

Prerequisites

Enertex® EibPC²: Firmware 5.000 or newer
Enertex® EibStudio: Version 5.000 or newer

Note

Without prior written approval by Enertex® Bayern GmbH, the contents of this document may not be reproduced, transferred, distributed
or stored in any form, either in whole or in part.

Enertex® is a registered trademark of Enertex® Bayern GmbH. Other product and company names mentioned in this manual may be
trademarks or trade names of their respective owners.

This manual may be changed without notice or announcement and makes no claim to completeness or correctness.

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 2 von 247

Contents
Safety instructions ... 5

License .. 5

Help .. 5

E-Mail .. 5

Support-Export ... 5

Telephone .. 5

KNX-User-Forum ... 5

Videos .. 5

Updates .. 5

Enertex® EibPC² ... 6

Overview .. 6

Commissioning .. 8

Connectors and Control Elements .. 8

Installation .. 9

Device Start ... 10

Firmware Update ... 10

Factory Reset .. 10

EibStudio Quick Start Guide .. 11

EibStudio ... 12

Installation ... 12

Title Menu .. 12

Projects List ... 12

Projects Directory ... 12

Import EibStudio 3 Project .. 12

Settings .. 12

Configuration Directory ... 12

User Interface .. 13

Overview .. 15

Objects .. 15

Import Group Addresses .. 15

Topology .. 15

Internal Variables ... 15

Constants ... 15

Logic .. 16

Definitions .. 16

Debug-Mode .. 17

Visualization Objects .. 17

Visu ... 18

Elements .. 18

Functions ... 18

User Templates .. 18

Templates .. 18

Access from Logic and Expert .. 18

Expert .. 19

Auto-completion ... 19

Macros ... 19

Custom Visualization .. 19

Access Visu Elements .. 19

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 3 von 247

Syntax .. 20

Online-Debugging .. 21

Project Settings .. 22

Search EibPC .. 22

Connection to KNX ... 22

Network address .. 22

Name resolving .. 22

Ports .. 22

Date and Time ... 22

Location ... 22

SHUTDOWN Variable .. 22

FTP .. 22

E-Mail .. 22

Backup ... 22

Files ... 23

HTTPS ... 23

VPN ... 23

IDs ... 23

IDs ... 24

Activation codes ... 24

Export and Import .. 25

Debugger ... 25

Group Monitor .. 25

Long Term Buffer ... 25

Events ... 25

Simulation .. 25

Objects ... 26

Data types ... 26

Numbers (Constants) ... 27

Character strings .. 28

IP Address ... 28

Individual Address .. 28

An overview of the data types .. 29

Variables .. 30

Group addresses ... 30

”Manual” Group Addresses .. 30

Initialize Group Addresses .. 31

Evaluation .. 32

Visualization .. 40

Viszalization editor ... 40

Password protection ... 42

Elements .. 42

Functions ... 43

Templates .. 43

Visualization in Expert .. 44

Pages .. 44

Elements .. 51

Element Definitions .. 55

Icons .. 68

Examples ... 87

Logic .. 87

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 4 von 247

Expert .. 88

Expert Functions .. 112

Logical operators .. 112

Time .. 116

Date ... 123

Shading and the position of the sun ... 126

Timer ... 129

Comparator time switches .. 131

Delays .. 134

Remanent memory ... 139

Arithmetic operations ... 142

Special functions .. 149

Lighting scenes .. 158

Strings ... 161

Parser .. 174

KNX Telegrams .. 175

KNX-Telegram-Routing .. 179

Network functions .. 184

UDP ... 184

TCP server and client ... 187

Ping ... 190

Resolve Hostname ... 191

Email .. 191

VPN Server .. 193

FTP .. 195

HTTP-Requests ... 197

Modbus TCP .. 199

MQTT ... 203

Visualization ... 207

Switches .. 207

Slider .. 211

Pictures .. 214

Links .. 215

Value Charts .. 217

TimeCharts .. 219

Inputs ... 222

Output .. 222

Macros ... 223

Definition .. 223

Special characters ... 224

Runtime errors and syntax errors ... 224

Macro wizard .. 224

Local Variables .. 224

Return Values .. 225

Online debugging at runtime ... 226

Events .. 227

Problems and solutions .. 230

Licenses .. 231

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

Safety instructions S. 5 of 247

Safety instructions

License

Help

E-Mail

Support-Export

Telephone

KNX-User-Forum

Videos

Updates

Thank you for buying an Enertex® EibPC².

Please mind the following safety instructions

● Installation and assembly may only be performed by an authorized electrician.

● For connecting KNX interfaces, expert knowledge gained by KNX- trainings is assumed.

● Damages of the device, fire or other dangers could result from violating the instructions in
the manual

● This manual is part of the product and has to remain at the end user.

● This device may not be used for applications with risk potential (failure, potential fault of
the time switch, etc.).

● With purchasing the Enertex® EibPC, you are licensed to use the EibStudio. The EibStudio
and all independently running components may only be used for the EibPC.

● The manufacturer is not liable for any costs or damages incurred at the user or third parties
through the use of this device, abuse or fault of the connection, fault of the device or the
user equipment.

● Unauthorized changes and modifications to the equipment will void the warranty!

● The manufacturer is not liable for improper use.

Please send a support request to eibpc@enertex.de if you encounter problems with your EibPC².

To simplify support, please attach your project in question to the support request. Click on HELP →
EXPORT FOR SUPPORT from the title menu and send the .esp file. The export is a .zip file containing your
project and all uploaded webserver files, as well as machine-specific information (e.g., operating sys-
tem) and the .log file. Private information (e.g., ftp, e-mail passwords) are stripped from the project.

You can also use our support via telephone at +49 9191 73395 0 (during business hours) free of

charge.

At http://knx-user-forum.de/eibpc a separate area for support of the Enertex ® EibPC is set up. You
will also find direct advice from expert users and professionals.

Please have a look at our Youtube channel http://videos.eibpc.com/

Please find updates for the EibPC² on our website www.eibpc.com.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

http://www.eibpc.com/
http://videos.eibpc.com/
http://knx-user-forum.de/eibpc
mailto:eibpc@enertex.de

Enertex® EibPC² S. 6 of 247

Enertex® EibPC²

Overview

Summary

KNX-Functions

Figure 1: EibPC²

The perfect control center for a smart future: EibPC². The new hardware platform with an ARM CPU
for industrial applications, fast and low power DDR RAM and 8 GB flash memory guarantees perfor-
mance and reliability for many years.

Simple logics or complex control flows – with the EibPC² it is easy to solve both tasks. If the built-in
functions do not fit your ideas, you can freely create programs.

Keep the overview with our modern web-based visualization.

The integrated bus interface obviates the need for a dedicated power supply. The EibPC² can also
be used as KNX interface (ETS) for programming your KNX devices. The integrated display shows
important information.

Proven security features such as encrypted web server and VPN functionality, are of course avail -
able in the EibPC², too.

Our completely new designed, parametrization and visualization tool EibStudio V4 manages your ex-
isting EibPC or new EibPC² installation. EibStudio V4 is available free of-charge for Windows, OSX
and Linux.

The EibPC² offers the following functions for the KNX installation

● Scene actuators

● Conditional instructions (if-then)

● Timers

● Time and date emitters (synchronized via LAN, KNX or Eibstudio)

● Highly accurate timers (in the ms range)

● Controls with any structure

● Evaluation of mathematical expressions

● Delay elements

● Combination of KNX objects (gates, multiplexers, ...)

● Control of actuators (e.g. cyclic read requests)

● Storing variables in remanent memory (Patch 1.100 needed).LAN-Functions

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Enertex® EibPC² S. 7 of 247

Data logging

Logging of up to 500,000

telegrams is possible

Software

Enertex® EibPC has a LAN interface, which realizes

● Monitoring of bus services (excluding ets [and PC])

● Sending and processing of any KNX telegrams (without ets)

● Synchronization of the bus time via Internet (without ets)

● Sending, receiving and processing of UDP frames (additional option NP), e.g. for the con-
trol of multimedia systems

● Sending e-mails (additional option NP)

● Integrated web server (additional option NP)

● VPN Services configurable with KNX (additional option NP)

Memory The EibPC stores all bus telegrams. Up to 500,000 frames are held in a ring buffer, even if
no PC is connected to the EibPC. With an average bus load of three telegrams per minute this corre -
sponds to all telegrams of the last 200 days.

Time Using time stamps, which are automatically generated by the EibPC, the bus traffic can be an-
alyzed at any time.

Online In addition, it is possible to view the data online and to filter by sender and group addresses.

Filter The telegrams can be already pre-filtered by the device address and group address.

Auto-log The EibStudio allows the cyclic saving of (possibly filtered) telegrams in files.

FTP The EibPC can store telegram data on a arbitrary FTP server. EibStudio evaluates this binary
and exports it into readable CSV text.

By means of the EibStudio as a configuration program a home automation is provided via the LAN
interface of the EibPC to a Windows®, Mac® OS X or Linux® PC. This ensures that the EibPC can
be programmed easily without the ets.

Basic The programming is carried out by a simple Basic syntax for which no time-consuming training
is necessary. For the basic functionality, it is not even necessary to learn this basic. The user has a
selection of available ready-made function blocks, where the user has merely to add group ad-
dresses etc.

ETS The EibStudio imports the addresses and settings of the ets. It can also be used entirely without
ETS import.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Enertex® EibPC² S. 8 of 247

Commissioning

Connectors and Control Ele-

ments

2
1

3
4

5
6

7

2
1

5
4

8

8

99

1010

Figure 2: Connectors and Control Elements – one-button and three-button device versions

See 2 for the connectors and control elements:

1. LAN1

2. LAN2

3. Alarm-LED (red)

4. Info-LED (orange)

5. Power-LED (green)

6. F1-button

7. F2-button

8. Control-button (one-button version) / Display-button (three-button version)

9. KNX

10. Display

The EibPC² is powered directly from the KNX bus (required voltage: 27V – 30V). Check the voltage
before installation if the device is not installed directly after the KNX power supply.

If the internal KNX interface is not required, a regular power supply can be used.

The KNX power supply must provide at least 3.2 W at its output (110 mA at 29 V Bus voltage).

The EibPC² has an integrated KNX bus interface. A dedicated KNXnet/IP-Interface can be config-
ured, and the EibPC² can be installed separately of the KNX installation..

All certified KNXnet/IP interfaces can be used with the EibPC².

We recommend one of the following:

● Enertex® KNX IP Secure Router

● Enertex® KNX IP Secure Interface

The EibPC² uses KNX net/IP Tunnelling. Once connected, the tunnel is not available to other devices
or the ETS.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Enertex® EibPC² S. 9 of 247

Installation

Integrated KNX interface

3

Integrated Ethernet-Switch

Dedicated KNXnet/IP interface

-

LAN1
KNX Bus

LAN2

...

Ethernet

KNX device 1

KNX device n

Figure 4: Connection of the Enertex EibPC² to the KNX Bus

4 shows how the installation of the EibPC². Figure

Installation steps:

1. Connect to LAN using LAN 1 oder LAN 2 (1,2).

2. The other LAN interface can be used to connect other devices.

3. Connect EibPC² with a (KNX) power supply.

Please mind: LAN 1 and LAN 2 are connected by an internal switch, and the EibPC² must be started
for the switch to operate.

When the EibPC² is (re)starting, the connection between LAN1 and LAN2 is interrupted. Restarting
the user program does not interrupt the connection.

When the internal interface is not used, connect the device as shown in 5.

KNX device n
KNX Bus

KNX device 1

Power Supply
27V – 30V 3,2 W

Ethernet

...

LAN1

-

Figure 5: Using a dedicated KNXnet/IP interface

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Enertex® EibPC² S. 10 of 247

Device Start

Firmware Update

Factory Reset

Reset on start

Reset while running

After the device has been plugged-in or restarted using EibStudio, the start procedure is as follows:

One-button version:

1. Info- and Power-LED are both on during system boot.

2. After system boot, the Power-LED starts to blink.

3. ~2 min after power-on, the Info-LED blinks once every second. A factory reset can be is -
sued (see below).

4. Initialize bus connection. The Info-LED flickers.

5. After booting, the display shows system information, including the IP address. The display
stays on for 30 s. By pressing the Control button, the display can be reactivated.

6. Normal operation. The Power-LED blinks continuously, the Info-LED blinks when KNX tele-
grams are received.

Three-button version:

1. After power-on, all LEDs are on with medium brightness.

2. After ~5 s, only the Power-LED is on with full brightness.

3. After system boot, the Power-LED starts to blink.

4. ~2 min after power on, the Info-LED blinks once every second. A factory reset can be is-
sued (see below).

5. Initialize bus connection. The Info-LED flickers.

6. After booting, the display shows system information, including the IP address. The display
stays on for 30 s. By pressing the Display-button, the display can be reactivated.

7. Normal operation. The Power-LED blinks continuously, the Info-LED blinks when KNX tele-
grams are received.

Firmware updates are installed using EibStudio. Download the Firmware file from our website, ex-
tract it (update file name: eibpc2-patch-x.xxxx.ptc). The update takes ~5 minutes. Make sure that the
power supply is not interrupted during an update.

If the device does not behave correctly after starting an update (e.g., both LEDs stayy off, display not
activated by Control-button), wait at least 20 minutes and force a reboot by disconnecting the device
from the power supply.

Please contact our support if the device cannot be reactivated.

During system boot, the Power-LED is on. After ~1.5 minutes, the Info-LED blinks (1s on, 1s off) for
5 seconds. Press Control to issue a factory reset.

The following settings are reset/deleted:

1. Change network-configuration to DHCP

2. Delete User program

3. Delete Sun data

4. Delete VPN settings

5. Delete HTTPS user

6. Delete scenes, variables

After reset, the Info-LED blinks and the device is restarted.

If the device is already operating, a factory reset is issued by holding the Display button/Control but-
ton for at least 20 s. The display shows a confirmation, and the Info-LED blinks. The device is
restarted.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio Quick Start Guide S. 11 of 247

EibStudio Quick

Start Guide

Open EibStudio

Project directory

Project-independent settings

Project

Project menu

Bus connection

Program

Objects

The device is connected to the LAN and started. In default configuration, DHCP is used to get an IP
address. This can be changed in the PROJECT SETTINGS later.

EibStudio or above is used as programming and configuration tool.

EibStudio has to be uncompressed. No installation procedure is required.

Important: A firewall may prevent EibStudio to communicate with the EibPC. Please verify
that the connection is not blocked.

On first start, EibStudio shows a configuration dialog to set the Projects Directory (p. 12).

EibStudio does not change or delete files outside of the projects directory and the Configuration Directory (p. 12).

When a project is imported, the project files are copied here.

You can change the projects directory in the Settings (p. 12). An open project is closed and all
projects in the new directory are listed.

Project-independent settings can be changed via EDIT → SETTINGS.

EibStudio opens with the projects list. You can create new projects, import existing projects or delete
projects. Only the files associated with the specific project are deleted from the projects directory.

A project contains all information to configure and run a device.

When a project is opened, the PROJECT MENU provides access to the functions:

● OVERVIEW: Device info, program statistics, project log

● OBJECTS: All group addresses and variables

● LOGIC: Editor to create logical connections of objects

● VISU: Editor for Web visualization

● EXPERT: Code editor for programs

● SETTINGS: Project-specific configuration of the EibPC

To start the first program, configure the connection to the EibPC. Open the project menu and navi-
gate to PROJECT SETTINGS → CONNECTION. If the device is in the same network segment, the automatic
search will find it.

The connection to the KNX bus can also be configured according to your installation.

Compilation of the project is started by selecting PROJECT → COMPILE from the title menu. The program
is a combination of the separate configurations. This includes logic, visualization, expert programs,
settings.

To run the program, select COMPILE AND RUN from the same menu.

To add group addresses to the project. select OBJECTS → ETS IMPORT from the project menu. You can
use .esf and .knxproj-Files, to get names and data types of the group addresses. Both can be modi-
fied later in OBJECTS → GROUP ADDRESSES if necessary.

Data types are required when using the Debugger and the Group Monitor.

The list on variables is regenerated on compilation and cannot be modified.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 12 of 247

EibStudio

Installation

Title Menu

Projects List

Projects Directory

Import EibStudio 3 Project

Settings

Configuration Directory

This section introduces the basic structure of EibStudio and the user interface.

If not made explicit, EibPC refers to all device generations in the following sections while EibStudio
(without version number) means version 4.

EibStudio does not require any installation procedure (like EibStudio 3) but only has to be extracted.
Check that you have permissions on that directory, especially if you move the EibStudio into a
shared directory, e.g., into Programs on Windows.

The file eibparser.exe in the subdirectory bin must be executable.

The Title menu bar contains central functions, which do not refer to a specific project (e.g., Settings,
Help). With an active project, often-used functions (e.g., compile the project, execute the program),
are added to the title menu.

Add new projects or import existing projects from EibStudio 3 or EibStudio. A project manages all in-
formation required by one EibPC (configuration and program). All projects are stored in the projects
directory.

Do not change any file within the projects directory!

On first start, a dialog asks for the location of the projects directory. Make sure that you have the
necessary permissions (read, write) on that directory.

EibStudio does not change or delete files outside of the projects directory and the Configuration Di-
rectory (p. 12). When a project is imported, the project files are copied here.

The projects directory can be changed in the SETTINGS (p. 12).

EibStudio 3 projects consist of one or more source files (.epc). Supplementary source files are are
imported by the main file using the #include directive.

To import an EibStudio 3 project, click the respective button and select the main program. In the dia -
log, select the directory of the EibStudio 3 program executable. This directory is used if the main pro-
gram uses relative paths with the #include directives.

A new project is created with the name of the main program file. If an included file is not found, the
import process is canceled and a message shows, which file could not be found. Check the path and
change the #include if necessary. Restart the import process.

The following is imported into the new project if the process has been successful:

[ETS-ESF]: The group addresses from the .esf file are imported into OBJECTS

[InitGA]: Initialization is activated for all group addresses

[FTP], [MailConf], [Performance], [VPN], [HTTPS], [Location]: Settings are set in SETTINGS → EIBPC
and PROJECT SETTINGS → REMOTE ACCESS

[MacroLibs]: The source files are imported as USER MACROS in EXPERT. Most of the EibStudio 3 li-
braries are already integrated into EibStudio. If a user macro and an internal macro have the same
name, the library containing the user macro is disabled.

The program is added as new program in EXPERT. The sections listed above are converted into com-
ments, the sections [EibPC], [Macros], [Webserver] are renamed into #addto [EibPC], ...

Project-independent settings are located in the title menu EDIT → SETTINGS. They are used for all
projects and stored in the configuration directory, in the file eibstudio.json. The path of this directory
depends on the operating system used:

● Windows 10: %LOCALAPPDATA%\eibstudio\User Data\Default

● Linux ~/.config/eibstudio/Default/

● OSX: ~/Library/Application Support/eibstudio/Default

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 13 of 247

User Interface

Navigation

Extended Navigation

Figure 1: Overview

1 shows the main navigation elements. With an active project, the title menu (1) is extended by func-
tions often used. The project menu can be made visible with the project menu button (2). This menu
is used to navigate between the different components of the project. Some of the components use
tabs (3).

3
2

1

5

4

6

Figure 2: Extended Navigation

The following refers to 2. LOGIC, VISU and EXPERT use additional navigation elements.

The main area (1) shows the currently selected entry (2). Entries from (3) can be clicked or dragged
into (1). To remove elements from (1), select them by click and press Del. Hold Shift or Ctrl to
add/remove elements to/from the selection.

Entries in (2) are added/modified/removed by clicking buttons (4).

The arrow (5) hides (2) to enlarge the main area.

Double-click elements from (1) and (2) to open the property dialog.

The red triangle nearby (6) shows that the internal configuration of the element is incorrect or incom -
plete. The program will not work as expected.

The blue circle indicates a modification since the project has been saved.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

1

3
2

EibStudio S. 14 of 247

Property Dialog

1

Figure 3: Property dialog

The property dialog (see 3) is used to change the internal configuration. Most dialogs provide an inte-
grated help function (1).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 15 of 247

Overview

Objects

Import Group Addresses

Import .knxproj or .esf from ETS4/

ETS5

Infer Data Types

Topology

Internal Variables

Constants

The following sections explain the components of the project menu.

Overview shows information on the configured EibPC and on the compiled program. Similar to the
ETS, project-specific information can be set and a project log allows documenting project changes.
Log entries are not related to an internal state but only used for documentation.

Objects lists all known group addresses (”Manual” Group Addresses are not included), variables and
predefined constant values. For a detailed explanation of these objects see Objects (p. 26). When a
project is created, these lists are initially empty. On compilation of the project, they are updated. If
the compilation fails, the issues have to be resolved before the lists can reflect changes.

The group address- and variables lists can be used to fetch the object's state from the EibPC. Select
a specific object and click on the respective button in the upper right corner. A double-click
fetches the current state, Ctrl+click to send a bus telegram or change the internal variable state.

Use the Debugger for extended features like sending read requests or watch multiple objects.

Group addresses cannot be created to avoid inconsistency on the KNX bus. Instead, group ad-
dresses must be imported from the ETS. EibStudio can read ETS 4/5 project files (.knxproj). Export
the project in the ETS project list to create it.

The project must not be password-protected and must use 3-level group addresses.

For all imported group addresses, EibStudio tries to find the associated Data types. If neither the
group address nor the connections have a DPT, an unsigned integer type with the bit length of the
communication object is assigned. Unconnected group addresses remain without type information
and cannot be used until a type is assigned.

EibStudio still supports .esf imports (used in EibStudio 3). This file however only includes connected
group addresses and type information are less detailed. Only use this import type of importing a
.knxproj file is not an option. Create the .esf file from ETS by using “OPC-Export“.

After import, the type of any group address can be modified.

An incorrect type leads to an incorrect interpretation of bus telegrams!

The .knxproj import also reads the bus topology. This information is used to map individual ad-
dresses to devices in the Group Monitor (p. 25).

Variables can be created by the user to store any kind of internal state without having to send it no
the bus.

Variables are also defined automatically by Logic, Visu and Expert macros. These internal macros
are hidden by default, but can be made visible in OBJECTS → VARIABLES and in the DEBUGGER.

EibStudio defines constants to simplify Expert programs, listed in OBJECTS → CONSTANTS. Constants
cannot be changed or redefined.

A new project has to be compiled once before the list of constants is loaded.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 16 of 247

Logic

Definitions

Aggregated inputs

Types

Delete edges

Convert

Multiple logics

The Logic is a simple way to combine objects and operations.

The following definitions:

Node

Represents an object or operation. Has a type.

Input

Handle on the left of a Node. Can be connected to one or more Outputs via Edges, except for
Outputs of its Node.

Output

Handle on the right of a Node. Can be connected to one or more Inputs via Edges, except for In-
puts of its Node.

Port

Input or Output

Edge

Connects exactly one Input with one Output.

Trigger

Port which starts an operation when the value changes from 0b01 to 1b01. The function is not
triggered again while the Port is 1b01.

If multiple edges can be conntected to a single Port, their order is not relevant. If the order of a
Node's parameters is not relevant (e.g., ADDITION), only a single Input is used for simplicity. Connect
all Outputs to this Input.

Every Port has a type. Only Porty with compatible types can be connected. The following type com-
binations are possible:

*: All types

Any type

b, u, f: Type class

Any type of the same class

b01, u08, f16: Specific type

Exactly this type

Examples:

An Input of type b01 may be connected to Outputs *, b, b01.

An Output of type u,s may be connected to Inputs *, u, uXX, s, sXX with XX being any size.

Please mind that a specific type must be known at compile time. The allowed types of the affected
nodes are are updated with every new edge, but they remain when edges are removed. It may be
necessary to replace a node with a new instance to reset the allowed types.

If nodes with incompatible types are to be connected, use the special node type CONVERT. It converts
every type in every other type, but data may be lost if the new type can store less information.

Logics can be split into multiple ones. Each Logic has the same priority, If a single object is written
by multiple Logics, the object keeps the lastly written value. If an object is written multiple times in
the same cycle, the result is undefined.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 17 of 247

Debug-Mode

Visualization Objects

1

Figure 4: Debug-Mode in Logic

To implement the Logic, internal variables are created for every Input and Output. They are usually
hidden (p. 15). To get the current state of each Node, turn on the Debug mode (1).

When active, all Ports are highlighted. On click, the internal state is fetched from the EinPC.
Ctrl+Click can be used to directly set a new value.

It is recommended to use Simulation for advances tests (p. 25).
The Logic in 4 shows how to use the EibPC as a time master for the KNX bus. Every time the EibPC starts its pro -
gram, it sends date and time to the bus, using appropriate DPTs. If NTP is used, the EibPC waits for the time to be
synchronized before starting the actual program. Additionally, time information can be fetched by sending a request
to the group addresses.
The Group Monitor shows both telegrams, date and time.

If the predefined Visu elements do not fit your needs, it is easy to use the Logic to evaluate Visual -
ization events and change elements. Open VISU, add the element and select “Connect to logic” from
its property dialog.

This makes the element usable for your LOGIC. Open your Logic, add the respective type of visualiza-
tion element, depending on what you added in VISU. Open its properties and select the element.

Hint: If you have complex Logics using both, return value and setting the element's status, you sim -
ply can add the same node twice (copy Ctrl+c, paste Ctrl+v), to the left and to the right. Add
edged only to the outputs and inputs respectively. Like that, crossing edges can be circumvented.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 18 of 247

Visu

Elements

Functions

User Templates

Templates

Access from Logic and Ex-

pert

It is simple and fast to create a Visualization in EibStudio.

Each visualization is split into groups and pages. Each page can have an individual size and design.
The order of the sections and pages is also used on the webserver. It can be changed by dragging
items to the right place.

Elements are individual items of the visualization, e.g., buttons, charts. One's behavior can be
changed in its property dialog. Most of the functionality needed for a elaborate visualization can be
directly configured on an element, like a button to toggle a group address or a slider to dim the light.

Functions on the other hand are predefined Elements or groups of Elements with a custom property
dialog. To use a Function, all Elements must be placed on the same page. Otherwise the Function
cannot be added to the page.

Placement of Elements (either individual or Function Elements) can be changed by dragging them to
an empty space. The preview directly shows how the real visualization will look like.

The currently active page can be stored as a user template, which then can be added to any other
project. Created templates cannot be modified. Instead, simply add it to your current project, modify
it and save it as a new template. All connections to objects are preserved by the template. If you
have similar structure for multiple projects, this saves much of your configuration time.

Additionally, EibStudio provides some templates, e.g., for the SmartMeter.

To implement more complex functionality, it is possible to connect Elements to the LOGIC or your
EXPERT programs. This was, you still can use the graphics visualization editor without losing flexibility
compared to a “programmed” visualization (Custom Visualization, p. 19).

Using an Element from within your Logic, is simple. You can switch between the basic appearance
and its “active” state (p. 17).

With the EXPERT, you are not limited in any way. A unique Variable is defined to access the element,
without having to know its ID (nor the ID of the page). See Access Visu Elements (p. 19) for details.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 19 of 247

Expert

Auto-completion

Macros

Custom Visualization

Access Visu Elements

The Expert provides access to every feature of the Exertex® EibPC by writing programs. For a func-
tion reference, see Expert Functions (pp. 112).

Number of Expert programs is not limited. All programs are compiled in the same “global” context
without special ordering. A variable defined in one program can be used in any other program (but
also must be unique!)

Auto-completion is used to functions, macro and objects. The lists are updated on compilation. If you
define a new variable, you have to compile the project for the auto-completion to include this vari -
able.

To simplify entering a group address, start it with double-quotes and enter significant parts of its
name or number in the correct order: “ followed by 123 completes to “1/2/3 Light” and “1/0/23 Oth-
erLight”.

Macros are similar to functions in other programming languages. They are used to structure the pro-
gram and avoid code duplication. An large collection of macros is provided with EibStudio.

You can use the expert to “program” your visualization. Use the directive #addto [Webserver] before
starting with webserver definitions (Visualization in Expert, p. 44).

Every webserver element uses an individual ID for definition and as a reference for other functions
referring to the element. Visualization defined in VISU automatically generates such IDs. It is neces-
sary that these IDs do not alias with the IDs used for custom visualization.

If an EibStudio 3-project im imported, this is especially important if it includes visualization (custom or
defined with the Visu-assistant).

To avoid conflicts, please check the code, which IDs are used, and enter the first free IDs into
PROJECT SETTINGS → IDS (p. 24).

It is also possible to combine an Expert program with visualization elements defined in VISU. Element-
IDs used by the webserver change, depending on page order and placement of the Elements. In-
stead of the numerical ID, you can assign a unique name to an Element. On compilation, the internal
ID is assigned to this Variable. Do not forget to compile the project for the Variables list to be up -
dated, so the name is available for auto-completion.

The name must be a valid Variable name (p. 30).

If the ID of the Element is relative to the page (see below), EibStudio automatically defines a Variable
for the page's ID. Its name is the Variable's name with the additional suffix “_P”.

Example:

The unique Variable for a Button element is ButtonVar. A Button is relative to the page (function
pbutton), so the Variable to refer to the page is ButtonVar_P. After compilation, both Variables can
be used by the Visualization (p. 207):

pdisplay(ButtonVar, $MyButton$, INFO, ACTIVE, GREEN, ButtonVar_P)

If you use custom visualization pages, you have to define the start-IDs for VISU (p. 24).

Page-dependent Visualization-elements:

Button, Shifter, Multibutton, Multishifter, Slider, Picture, Value Chart, TimeChart.

Global IDs:

Webinput and Weboutput.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 20 of 247

Syntax

Define Variables

Group Addresses

if-Clause

Comments

Define a Variable by assigning an initial value and type. The name must be unique. See p. 30 for a
detailed explanation of Variables.

Var=1b01

The last known (internal) value of a group address can be assigned to a Variable. Use the name
shown in OBJECTS → GROUP ADDRESSES, consisting of the name of the group address defined in the
ETS, followed by the numerical group address (main-, middle-, sub group), separated by a dash “-”
(see p. 30). The Value of Var changes whenever the state of the group address changes.

Var=“GA-1/2/3“

The most simple form of an if-statement is convenient for simple if-then rules.
if “GA-1/2/3“ then Var=EIN endif

The general definition of th if-clause is

if (Condition) then {Block}Statement1 else {Block}Statement2 endif

The condition must be of type 1b01.

A statement is an assignment, a function call or a macro instantiation. Multiple statements are split
by “;” (semicolon).

If the statements span multiple lines, they must be enclosed by “{}”:

if ("Switch-1/0/0"==ON) then {

write("Light-1/1/1",ON);

write("Dimmer-1/1/2"u08,80%);

} else {

write("Light-1/1/1",OFF);

write("Dimmer-1/1/2"u08,0%);

} endif

You can add comments to your programs::

1. Line comments starting with „//“

2. Block-Comments “/* ... */”: used instead of a statement. When used inside of a block, a
semicolon required at the end.
/* This is a comment */

// Another comment

u=5;/* And the last comment. Don't forget the semicolon */; u4=5

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 21 of 247

Online-Debugging

Send a string to a remote host

Empty macro

Online debugging helps by getting notified when values change at runtime. A simple way is so emit
UDP datagrams with the new value. They can be received by a simple listening program, e.g., netcat
(see https://de.wikipedia.org/wiki/Netcat).

A simple Debug-Macro could look like the following. The datagrams are sent to IP 192.168.1.18, port
9000 (netcat -ul 9000).

#define DEBUG

#ifdef DEBUG

// Send datagrams to 192.168.1.118, port 9000u16

:begin vmDebugUDP(cString)

:return {

 sendudp(9000u16, 192.168.1.18, cString+tostring(0x0d,0x0a));

}

:end

#endif

#ifndef DEBUG

:begin vmDebugUDP(cString)

:return __EMPTY()

:end

#endif

If Debugging is enabled by #define DEBUG, a UDP datagram is sent every time the statement is
evaluated. If #define DEBUG is not active by adding a comment to the line, nothing is done. Note
the statement __EMPTY(). If prevents the macro from being instantiated, and no code is generated
at all.

x=3

If x>5 then {

 x=x*2;

 vmDebugUDP($x is $+convert(x,$$));

} endif

If #define DEBUG is defined, a datagram is sent when x changes. Otherwise, the statement
vmDebugUDP($x is $+convert(x,$$)); does nor generate any overhead.

If a statement is used only then debugging is active, keep in mind that even with an empty then-
clause, objects are created:

x=3

If x>5 then {

 vmDebugUDP($x is $+convert(x,$$));

} endif

The compiler does not create anything for the debug statement, but for the if-statement if x>5. A
more efficient way is to disable the whole block:

x=3

#ifdef DEBUG

If x>5 then {

 vmDebugUDP($x is $+convert(x,$$));

} endif

#endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

https://de.wikipedia.org/wiki/Netcat

EibStudio S. 22 of 247

Project Settings

Search EibPC

Connection to KNX

(P)

Network address

(S)

Name resolving

(S)

Ports

(P)

Date and Time

(S)

Location

(P)

SHUTDOWN Variable

(S)

FTP

(P)

E-Mail

(P)

Backup

(S)

The project settings are used to configure a single EibPC, i.e., a single installation.

Changed must be sent to the EibPCs, either by pressing a button (S) or together with the program
(P).

The search packet for EibPCs on the local network is sent from every Ethernet device.

Select the right connection type, depending on your configuration.

The EibPC is automatically restarted when the network configuration is changed. If the device is un -
reachable, perform a Factory Reset to activate DHCP (p. 10).

Some functions rely on the network name resolution via one or more DNS server (sendmail, resolve).

TCP- und UDP-Ports für eingehende und ausgehende Verbindungen.

For the time functions, a correctly set internal time is inevitable. It is highly recommended, to use the
same time source for each devince connected to the KNX bus. The EibPC can use time information
from the bus to synchronize the internal clock. If no reliable time source is available, the EibPC can
be the time master, and regularly send its internal clock to the bus.

The EibPC can keep its clock synchronized to a server its internal clock using the NTP protocol.

If NTP synchronization is active, it has the highest priority. A manually set time (either via EibStudio
or the KNX bus is overwritten. Before the actual EibPC program starts, it tries (at most 5 minutes) to
synchronize its clock.

The EibPC computes a lookup table for each 5-minute interval for the current year, to “know” the
sun's position in any cycle. Updating the sun-data takes ~5 min.

Before the program is stopped (when a new program is transferred or the EibPC is restarted using
EibStudio) the variable SHUTDOWN can be set to 1b01 to allow function to store values on the flash
memory. A delay of 5s is recommended.

The EibPC can forward all telegrams received from the KNX bus to an FTP server. It uses port 21

Configure the server connection to send emails. (P)

Be fore a new program is transferred to the EibPC, the currenty open project can be exported and
sent to the EibPC. The synchronization can also be triggered manually, and the backup can be
fetched at any time.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 23 of 247

Files

(S)

HTTPS

(S)

VPN

(S)

IDs

(P)

To use a custom image in the visualization, it must be sent to the EibPC. The image is also stored in
the projects directory and automatically sent again if another EibPC is used with the same project.
Images on the EibPC not yet added to the project are also synchronized.

Only use regular letters and numbers, no symbols or umlauts.

The EibPC can provide an encrypted access to the visualization using HTTPS. A certificate has to be
generated and user credentials must be set before.

For access from outside of the network, TCP port 443 must be forwarded to the EibPC.

To access your network, the EibPC can open an OpenVPN server. You must generate a certificate
before the OpenVPN server can be started.

The firmware manages internal resources by unique numbers (IDs). To prevent collisions between
self-assigned IDs and automatically assigned IDs modify the start IDs.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 24 of 247

IDs

Activation codes

The firmware uses unique numerical IDs to access internal objects. They are set when an object is
defined and must be used to access the object.

If a new activation code to unlock features of the EibPC has been purchased, it can be applied using
EibStudio.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

EibStudio S. 25 of 247

Export and Import

Debugger

Group Monitor

Long Term Buffer

Events

Simulation

To export a project, select PROJECT → EXPORT from the title menu. All project data is copied into a .zip-
archive with the file ending .esp. In contrast to HELP → EXPORT FOR SUPPORT, this includes private data
(e.g., e-mail password).

To open the Debugger, select EIBPC → DEBUGGER from the title menu. Add group addresses and vari-
ables to the list of watched objects. You can use the Debugger to fetch the internal state of all ob-
jects on the watch list, send group telegrams, read requests, and change the internal state of objects,
which triggers the evaluation of depending objects just like any other “regular” change.

Select EIBPC → GROUP MONITOR from the title menu to watch telegrams. If the project contains topo-
logical information from an .knxproj import, the Group Monitor shows the device name assiciated to
the individual address of the sender of group telegrams.

The list is limited to 100 last entries. The list can be stored in a .csv file.

The Long Term Buffer automatically kepps a list of the last 500.000 telegrams. Old telegrams are re-
moved if the buffer is filled. To fetch the buffered telegrams, select EIBPC → FETCH LONG TERM BUFFER

from the title menu to store a .csv file.

Whenever something unexpected happens, an Event is logged and buffered until the Event log is
read by selecting EIBPC → EVENTS from the title menu. See p. 227 for an explanation of the Events.

To implement and verify complex control logic, simulation may be helpful. Select the KNX connection
type “Simulation” from the Project Settings (p. 22). The Group Monitor still shows all telegrams sent
by the EibPC, without affecting other devices.

To simulate other devices' behavior, send status updates to the respective group addresses and an -
swer read requests. A basic simulation is shown in 5.

Add three GROUP ADDRESS nodes and configure the them as follows:

1. Generate a trigger on reception of a read request

2. The currently stored internal value

3. The write node uses an external trigger and marks the telegram as answer.

Figure 5: Answer Read Request

Use this method to create test environments instead of forcing 10s of values within the Debugger.

Without access to the KNX bus, read requests cannot be answered and have to time-out. Each re-
quest takes 1.5 s when the EibPC starts, which creates a huge and unnecessary delay. The initial-
ization can be disabled in the Project Settings (p. 22).

Do not forget to enable the initialization after simulation!

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

1

2
3

Objects S. 26 of 247

Objects

Group addresses

Variables

Data types

Objects represent internal states, and they can trigger state transitions. Basically, EibPC programs
contain a set of rules: if s.th. then do s.th. else. Objects are both, condition as well as result.

The EibPC knows of two types of objects: group addresses and variables.

Group addresses are objects with a state known to the knx bus devices. Each device must update its
internal state of relevant objects when it receives a bus telegram and react accordingly if configured.

Apart from thes public object states, each devices has internal states, which are only used by the de-
vice itself. Those objects are called variables.

Example: A switching actuator watches a group address connected to its communication object Tog-
gle channel 1. The actuator knows its internal switching state used to turn on or off. It also sends its
new internal state to inform the other devices of the change.

When switching, the group addresses of the actuator's channel and its status, as well as the internal
state of the switch are relevant.

The basic principle of the EibPC, being a universal logic machine, is pretty much the same, apart
from the fact that the set of rules is defined by the program (and thus by you) instead of the device
manufacturer.

Every object can be combined with every other object by using one of many different internal func-
tions.

The ETS uses Datapoint types (DPTs) to organizes the type of group address telegrams. They de -
fine size and (optionally) its interpretation. An object of size 1-Bit (DPT 1) may be interpreted as DPT
1.001 On/Off or DPT 1.008 Up/Down.

DPTs are mapped to internal types on import, which only contain data type and size:

Possible types (based on standard programming languages) are:

● Unsigned (positive) integers Letter u (“unsigned“)

● Signed integers Letter s (“signed“)

● Floating-point numbers Letter f (“float“)

● Character string Letter c (“char“)

● Date and time Letter t or d or y (“time“, “day“, “year“)

The following lengths are possible

● 1 bit 01 digits

● 4 bit 04 digits

● 8 bit 08 digits

● 16 bit 16 digits

● 24 bit 24 digits

● 32 bit 32 digits

● 64 bit 64 digits

Character strings

● 14 characters 14 for DPT 16

● 1400 no digits, default length

● custom length Length between 1 and 65534 characters
not 14
In the following referred to as c

Accordingly, u08 is a data type of length 8 bits and represents an unsigned (positive) integer.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 27 of 247

Numbers (Constants)

Special type: % (Percentage)

Hexadecimal representation

By the help of the data type, numbers and constants can be declared in the EibStudio.

For numbers, the number is preceded by the type of data, thus e. g.

● 2u08 Positive 8-bit-integer: 2

● 2.0f16 Floating point number 2.0

● -6s32 Integer with sign -6

● 33.2% Percentage 33.2 (equivalent to 84)

Invalid syntax is recognized by the EibParser (integrated compiler in the EibStudio) and generates an
error message.

In case of unsigned integers with length 8 bits and of floating point numbers of length 16 bits, the
specification of data types can be omitted, i.e. values in the form

● 0 ... 255 are of type u08,

● 2.0 (decimal point in number) are of type f16.

For these two types of numbers, the specification of data types is optional.

In the ETS programming, the percentages “%“ are used. These are compatible to the data type “u08“
and are internally adjusted by the KNX actuators by scaling. Here, to simplify programming, we have
defined the percentage for constants. In this context, the percentage may be specified with a decimal
point, e. g. 2.3%. Because of the scaling, 100% corresponds to a value of 255u08 or the conversion
of a variable Y% is more generally as follows:

X [u08]=Y [%]
100

⋅255 for cutting off the decimal points

The built-in compiler within the EibStudio will make those adjustments for you, so that you can ad-
dress actuators as usual

When different types of data are linked in your application program with each other, e.g. the sum of
2u08 and 2u32, then an error is reported by the integrated compiler in Enertex ® EibStudio. There-
fore, accidental overflows, numerical problems, etc. cannot occur. To convert these numbers into yet
another, and thus to be able to process them, use the convert function. Hence, even conversions
from numbers to strings are possible. For further information, see page 150.

Unsigned integers (data type „u“) also can be given in hexadecimal representation with the prefix
“0x”. The compiler converts this representation into the respective number.

● Data type u08: Two digits are required 0xF1 (= 241)

● Data type u08: Two digits are required 0xF1u08 (= 241)

● Data type u16: At least two digits and the data type „u16“ are required: 0xF1A3u16 (=
61859u16)

● Data type u24: At least two digits and the data type „u24“ are required: 0xF1A3u24 (=
61859u24)

● Data type u32: At least two digits and the data type „u32“ are required: 0xF1A3u32 (=
61859u32)

● Data type u64: At least two digits and the data type „u64“ are required: 0xF1A3u64 (=
61859u64)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 28 of 247

Character strings

IP Address

Individual Address

Character strings have a custom length between 1 and 65534 characters, e.g.,ac1, ac65534. If
the length is omitted, a default length of 1400 characters is used. $String$ reserves memory for 1400
characters. To save memory, short phrases can be defined, e.g., offc3.

A length of 14 is handled differently and represents the DPT 16 which is encoded in ISO 8859
and used e.g., to show text on KNX devices like displays.

The two types of character strings, c14 and custom-length character strings can be transformed into
each other by using the convert-function (see page 150) but not used interchangeable.

IP addresses (add on Option NP) have the following syntax

● 192.168.22.100. An IP address is of data type u32.

Physikal KNX - addresses are defined as followed in the programm code

● 1.12.230. This address is of data type u16.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

An overview of the data types

Type Data typeExample of a constant Usage Range DPT EIS data type

Binary b01 1b01 Switch actuator, sun-blind actua-
tor

 0, 1 1 EIS1/EIS7

2 bit b02 2b02 Lock objects 0,1,2,3 2 EIS8

4 bit b04 10b04 Dimming 0,1 ... 15 3 EIS2

Percentage % 85.3% Heating regulators, actuators 0,1.1 ... 100.0 5 EIS6/EIS14.001

8 bit integer without sign
u08 255 Simple numbers, programmable

thermostats, etc.
 0, ... 255 5 EIS6/EIS14.001

8 bit integer without sign u08 255u8 Optional types 5 EIS6/EIS14.001

8 bit integer with sign s08 -45s08 Temperature sensors -128... 127 6 EIS14.000

16 bit integer without sign u16 45u16 0 ... 65535 7 EIS10.000

16 bit integer with sign s16 -450s16 -32768 ... 32767 8 EIS10.001

24 bit integer without sign u24 292235u24 0 .. 16777216 232.600 EIS11.000

24 bit integer with sign s24 -92999s24 -8388608 .. 8388607 EIS11.001

32 bit integer without sign u32 92235u32 0 .. 4294967295 12 EIS11.000
IP address (u32) 192.168.22.100 IP address: sendudp etc. 0.0.0.0 .. 255.255.255.255 EIS11.000

32 bit integer with sign s32 -9999s32 -2147483648 .. 2147483647 13 EIS11.001

64 bit integer without sign u64 92235u64 0 .. 18446744073709551615 n.a.

64 bit integer with sign s64 -9999s64 -
9223372036854775808 .9223
372036854775807

n.a.

Short float f16 4.0 Wind sensors -671088.64 .. 670760.96 9 EIS5
Short float f16 4.0f16 -671088.64 .. 670760.96 EIS5

Float 32 bit f32 4.0e01f32 -3.40282e+38 .. 3.40282e+38 14 EIS9

String c14 $HelloWorld$c14 Display panels 14 characters EIS15
String (c1400) $HelloWorld$ LAN telegrams 1400 characters n.a.
String (c1400) $HelloWorld$ LAN telegrams 1 – 65534 characters n.a.

Table 1: Data types

Note: The data types d24, t24, Y64 are KNX DTP types handled properly by their definition in EibPC. An input as a constant is not necessary and therefore not possible. These data types are needed only
in connection with the functions getdate and gettime.

Objects S. 30 of 247

Variables

Some examples

Not permissible here...

 ... but here

No special characters in

variable names

Group addresses

”Manual” Group Addresses

Variables start with letters, followed by any number and combination of letters or numbers, and the
“_“ character. Variables must be defined in global context (outside of an if-statement) and initialized
to a value or function. Opposed to keywords and function names, upper and lower case is respected.

Therefore, for example address and Address are different variables.

During the allocation of a variable and its processing, the compiler “EibParser“ always
checks the data type and prevents improper combinations of incompatible data types by an
error message when generating the user program. Therefore, no accidental overflow, numeri-
cal problems, etc. may occur.

If you want to combine variables with different data types, use the convert-function (see page).

Each variable must be initialized only once. The declaration of variables must therefore be unique.

a=123

A1=1b01

address=A1 or 0b01

Address=4%+5%+23u08

Value=4e4*0.2

w=4e16f32

Variables may not be defined depending on themselves (“recursion“). Therefore, the following ex-
pression is invalid as a definition:

a=a+1

In contrast, it is permissible to program a counter using variables in this way:

//Declaration

a=0

//Counting

if (sun()) then a=a+1 endif

Umlauts are not allowed in variable names. Therefore, the following expression is invalid

KitchenLightOn=1b01

Use the ETS import (p. 15) to add group addresses.

Besides the possibility to use group addresses by using the ets project data, you can define any
group address itself without having to resort to the ets Now, you must only use the following notation:

Manual address: 'Group address'Data type

Group addresses without using the ETS begin with a single quote, followed by the major group/
middle group/subgroup (in numerical format), followed by a single quote and the data type, as was
shown in 1.

Example:

'1/0/0'u08

'1/0/1'b01

'5/0/81's16

In the example above, the first group address 1/0/0 is of the type of an unsigned integer with 8 bits in
length, the address 1/0/1 is of a binary type and 5/0/81 is of the type of a signed integer with 16 bits
length. The simultaneous use of imported and manual addresses is possible at any time.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 31 of 247

Initialize Group Addresses

Before the EibPC starts processing the user program, the user might want to initialize the images of
the group addresses. The EibPC always saves the current state of the contents of the group ad-
dresses as a kind of image in memory (see also gaimage() on p. 234). If started all group address
images are set to 0, but as the KNX Bus is already running before the EibPC starts with processing,
theses memory images will not hold the real state if they are different form zero (which will be most
likely the case).

In order to synchronize with the KNX bus, some Group addresses have to be read by the EibPC.
You can achieve this by selecting the initialization check-box group address in OBJECTS → GROUP

ADDRESSES.

Important

• Before the actual program starts, the EibPC sends a read request and waits for the reply
(no longer than 1.5 s).

• The actual program starts after the last group address has been initialized.

• All statements and functions depending on an initialized group address are marked as in-
valid and processed in the first cycle, even if the request failed.

• An event is logged when a read request fails.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 32 of 247

Evaluation

Object tree

Program start

This section explains, how statements are evaluated. When the project is compiled, a program is
generated, which is executed by the firmware of the EibPC.

In contrast to a program for a microprocessor, this program is not a sequential list of instructions but
a dependency tree. The nodes of the tree are called Program Objects (not to be confused with Ob-
jects p. 26). Program Objects include all Objects, but also all Expert Functions (p. 112) are Program
Objects.

Instead of execution one instruction after the other, time is split into logical steps (cycles). Evaluation
of objects (logically) happens in parallel within a single cycle., each change has the same priority. To
minimize the work in each cycle, only changed Program Objects are evaluated.

Each Program Object knows

• if its value has changed since the last cycle,

• if it is still has a constant value,

• if an event occurred,

• if its descendants must be updated when its value changes.

If its value changed, the state is now “invalid” and is must be evaluated and all descendants must be
notified. After that, it is “valid” again.

Example: When the function “write” is evaluated, a telegram is sent to the KNX bus.

Each cycle consists of the following steps, until no object is invalid any more:

Invalidate

If a Program Object is invalid, it has to be re-evaluated. In the first program cycle, every object is
invalid. In any other cycle, an event must have invalidated the Program Object, e.g., a bus tele-
gram. Only Program Objects depending on a Group Address, Timer, TCP/UDP or an if-clause
can become invalid.

Evaluate

Update the value using the new input values. If the value changed, execute next step to notify
descendants.

Conditional Invalidation

Invalidate all Program Objects in dependency list.

The exact behavior depends on the type of the Program Object.

Every program object, e.g., variable, group address, … is initialized to zero (OFF, 0, 0.0 …) and has
the state “valid”.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 33 of 247

Assignments

Variables

The following examples can be added as new EXPERT program.

Example:
x=2

y="SaunaDimmer-1/0/1"+3%+x

z='1/2/3'b01 or '1/2/4'b01

The compiler generates the Program Object Tree (Figure 1).

The equal sign is used to assign the value of a constant, a variable or a function on the right to a
variable on the left. Both sides are equal after the assignment (p. 20). An assignment is only possible
of the data types f both sides are the same. Otherwise use the function convert (p. 150) to convert
the type of the right side.

With character strings the whole memory content is copied instead of stopping at the first 0-byte.
This allows to combine assignments and stringset (p. 162). If the character string on the left is wider
than the right side, the remaining memory content is overwritten with zeros. Please mind the differ -
ence between c14 and every other character string type.

x is initialized to the value 2, y to the value of the group address plus 3% plus x. The following cycles
to not change x since 2 is a constant. Instead, y is re-evaluated with every telegram on the KNX bus,
if the value differs from the last one received. Y depends on an expression which became invalid.
The same would be valid for x if x would change.

Invalidation propagates down the tree until the a Program Object does not change.

The Variable z indirectly depends on a group address. If “1/2/3” becomes ON (1b01), the logical OR
becomes ON and invalidates z if it was OFF in the last cycle. If “1/2/4” becomes ON in the next cy-
cle, OR is invalidated, re-evaluated but does not change. z is thus not invalidated.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 34 of 247

Functions

Side effects

Timer

"SaunaDimmer-1/0/1"

"SaunaDimmer-1/0/1"+3%+x

Assign

2

Sum

3%

x

Assign

x

Figure 1: Program Objects Tree for y="SaunaDimmer-1/0/1"+3%+x and x=2

Constant
Initialization

Invalidated by
KNX, TCP/UDP, RS232, Timer

Variable

if-then:
Evaluate all Statements

Event

Descendants

Change/
Event

Figure 2: Evaluation of Variables

A Function becomes invalid with its arguments. If an argument changes, the function es evaluated. If
the result differes from the current value, all descendants become invalid.

x=sin(3.14f32)

tan(2.0f32)

y=cos("Temperature-1/0/1")

z=event("Temperature-1/0/1")

Functions with side-effects are handled differently. When they are evaluated, they do not only
change their internal state but have some kind of externally visible behavior. To make sure that such
functions are only “actively” triggered, their arguments never invalidate the function, but they can only
be triggered by an if-statement (to be more precise, by the condition of the if-statement, see below).

write("Temperature-1/2/1",22.3)

write("Switch-1/2/10",!"Switch-1/2/10")

read("Temperature-1/2/1")

This program never writes to the KXN bus. If evaluated like a regular function, it would write to the bus in each and
every cycle.

Timers are handled similarily. Only the system time of the EibPC invalidates a timer.
o=stime(19)

O is ON (1b01) exactly 19 seconds after the beginning of every minute, and only for a single cycle.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 35 of 247

if-statements

Nested if-statements

Do not try!

Timer in then-clause

else-clause

The (non-nested) if-clause behaves a like a function with the condition being the single argument. If
the condition becomes invalid (any Program Object part of the condition changes), if is evaluated.
Not that this is true even if the condition changes to “false” (0b01).

a=1

if '1/2/3'b01 then a=3 endif

If a bus telegram for group address '1/2/3' is received and its value is 1b01, a becomes 3. It never changes any more
because 1 (from a=1) never invalidates a.

Nested if-clauses do not become invalid by their condition (in contrast to non-nested if-clauses) but
by the condition of the outer if-clause. This guarantees that the outer condition is evaluated. Thus,
the inner then-clause does not require the inner condition to change.

a=1

b='1/2/4'b01

z=0

if '1/2/3'b01 then {

 if b==ON then a=3 endif;

 z=cos(1);

 write('1/3/4'b01,OFF)

} endif

This example demonstrates the changed semantics of nested if-statements:
if change('0/0/1'b01) then {

 if ON then write('0/0/1'b01, !'0/0/1'b01) endif

} endif

 If the inner write statement was not inside of a nested-if, it would never be evaluated and nothing would get written to
the KNX bus, because the condition (constantly ON) never changes.
Due to being nested, wite becomes invalid with every change of '0/0/1', again invalidating the group address by send-
ing a telegram with the inverted value.
The program emits a telegram with every single cycle.

Timer in nested if-statements are only evaluated if the outer if-condition invalidates it.
Button='1/2/3'b01

a=OFF

if Button then {

 if htime(12,00,00) then a=ON endif

} endif

a becomes ON if Button becomes ON exactly at 12:00:00 (htime is 1b01 for a single cycle only at the exact time). A
more robust implementation uses chtime (its value becomes 1b01 at 12:00:00 and is reset at 24:00:00). If Button is
ON at any time after 12:00:00, a is ON (though a is never set to OFF again).

The else-caluse of an if-statement is essentially another independent if-statement with an inverted
condition.

Button='1/2/3'b01

if Button then write('4/5/6'b01, OFF) else write('4/5/6'b01, ON) endif

The program is identical to
Button='1/2/3'b01

if Button then write('4/5/6'b01, OFF) endif

if !Button then write('4/5/6'b01, ON) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 36 of 247

Queues When a cycle is complete (no Program Object is invalid), the output queues are processed. Function
arguments are evaluated with their most recent state, i.e., an Object may have been changed by a
function after the queued function. The following functions are queued until the end of a cycle:

• sendudp

• sendudparray

• resolve

• sendmail

• sendhtmlmail

• sendcp

• sendtcparray

• connecttcp

• closetcp

• startvpn

• stopvpn

• openvpnuser

• closevpnuser

• ping

Examples:
uPing=10

uIp=192.168.1.1

if after(systemstart(),1000u64) then {

 uPing=ping(uIp);

 uIp=192.168.1.100;

} endif

uIP is initialized with 192.168.1.1. One second after system start, the if condition is evaluated, and thus the state-
ments of the then-clause. ping is queued, while uIp=192.168.1.100 is executed without delay. When the cycle ends,
ping is executed with the already changed IP.

b=1

s=$Hello$

if systemstart() then {

 if b==1 then {

sendudp(4809u16,192.168.22.1,s);

s=$World$;

b=2

 } else {

sendudp(4809u16,192.168.22.1,s)

 } endif

} endif

The program send the string $World$ twice as the UDP queue is processed after the assign statements.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 37 of 247

Asynchronous return values Some function calls (e.g., connecttcp, sendmail) do not update their return value during the same cy-
cle of their of evaluation. Instead, they change their return value “asynchronously” to their evaluation.

Example:

// TCP off == 5

TCP=5

if after(systemstart(),2000u64) then {

 TCP=connecttcp(233u16,192.168.2.100)

} endif

Two seconds after Systemstart is 1b01, connectcp is called. The return value is set to 0 (Connecting). When the con-
nection is established, connecttcp changes TCP to 1 (Connected), without evaluating the if-condition again. All Pro-
gram Objects, depending on the return value, are evaluated in the next cycle.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 38 of 247

Macros

writes are global!

“Forward dependencies”

Definitions are global

Macros are essentially simple string-replacements.

Example:
:begin MyFunction(Message)

 write('9/2/0'c14, $Display $c14);

 write('9/2/0'c14, $Message:$c14);

 write('9/2/0'c14, convert(Message,$$c14))

:return OFF

:end

Only those macro statements after :return are relevant to the Program Object evaluation.

The program
if sun() then MyFunction($Light$) endif

does not write anything on sunrise. It is identical to:
write('9/2/0'c14, $Display $c14);

write('9/2/0'c14, $Message:$c14);

write('9/2/0'c14, convert($Licht$,$$c14))

if sun() then OFF endif

The write-instructions do not depend on sun(). With the changed program, evaluation is applied to the writes:

:begin MyOutputFunction(Message)

:return {

 write('9/2/0'c14, $Display $c14);

 write('9/2/0'c14, $Message:$c14);

 write('9/2/0'c14, convert(Message,$$c14))

}

:end

The same macro call
if sun() then MyOutputFunction($Light$) endif

now sends three telegrams to the KNX bus.

The :return expression “forwards” the dependencies of an if-statement to control evaluation within
macros. With :return, a larger block of statements or single parts of the function code depend on the
calling code.

Example:
:begin Act_3(Actuator,Now)
 Variable=3
 if Now then write(Actuator,Variable) endif

:return OFF
:endif

When used similar to
if sun() then Act_3('1/2/3'u08,chtime(5,00,00)) endif

only OFF depends on the condition of the if-statement (sun()).

:return defines the return value and which part of the macro becomes invalid with the if-condi-
tion.

The macro is expanded to
Variable=3
if chtime(5,00,00) then write('1/2/3'u08,Variable) endif

if sun() then OFF endif

Changing the macro to
:begin Act(Actuator,Now)

:return Variable=3; if Now then write(Actuator,Variable) endif

:endif

and calling it like
Variable=0

if sun() then Act('1/2/3'u08,chtime(5,00,00)) endif

is expanded to
Variable=0

if sun() then Variable=3; if chtime(5,00,00)) then write('1/2/3'u08,Variable) endif

After sunrise, after the system time is 5:00 o'clock or later, Variable becomes 3 and the new value is sent to the
group address '1/2/3'.

Attention: By moving the variable assignment into the then-clause, is is never initialized within the
global context and an explicit definition (Variable=0) is required.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Objects S. 39 of 247

Recursion The program
a=OFF

if a==ON then a=!a else a=!a endif

results in a recursive tree (see 3):
When initialized, the else-clause is evaluated, interverting a. Because it was changed, a (now ON) is invalid, the con-
dition is re-evaluated and the then-clause is evaluated, inverting a again. As it changed again, the condition is re-
evaluated, invalidating the else-caluse, inverting a, …

The firmware of the EibPC catches circular dependencies, stopps the evaluation and generates an
Event (PROC_REPITIONS, p. 227).

if-then

Assign

a

a==ON

OFF

Assign

if-else

Assign

!a!a

Figure 3: Program Object Tree Structure for a=OFF; if a==ON then a=!a else a=!a endif

The Program Object Evaluation guarantees that

• complex programs are executed efficiently by the EibPC

• Basic rules (if Button then Light) are easy to program

• all statements in a single cycle are executed “in parallel”.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 40 of 247

Visualization

Viszalization editor

The EibPC² offers a web based visualization which can be displayed on all modern browsers inde-
pendent of the operating system. When values change, the visualization website is updated immedi-
ately. In EibSTudio, the visualization can be created in Visu and/or in the expert.

The visualization is separated into groups of pages on which different elements are placed. Groups
are used only for clarity, but do not have any other properties.

Elements are distinguished between global and page-dependent elements. Global elements can be
used more often, i.e. they can be inserted several times on one or different pages. All these elements
are addressed with a function via the user program. In addition, there are page-related elements that
can only be used on one page. For addressing via the user program, the page must also be specified
in each case. This addressing takes place in the form of unique numbers, the IDs. These are as-
signed when the elements are created and are used for access by the user program.

When creating your own visualization pages, you must ensure that the IDs between Visu and Expert
do not overlap (see IDs, p. 23). All pages and elements must have unique IDs. Pages and global ele-
ments each have their own number ranges. All page- dependent elements on a specific page share
the same ID range. Global elements have a separate ID range for every Element type.

Elements of a page are arranged in a rectangular grid (cf. 1). For each page, the number of rows and
columns of this grid can be defined. There can be only one element in a cell of this grid. Most ele -
ments have a fixed size, i.e. a fixed number of rows and columns they need to be displayed. Over-
lapping of elements is not possible.

Figure 1: Page grid

For better readability on smaller displays, the number of columns is automatically adjusted (Respon-
sive Design). For example, on smartphones, the visualization is displayed in a single column, regard-
less of how many columns have been configured for the page. The arrangement is row-based, refer-
ring to the upper left corner of an element.

Figure 2: Visualization on Desktop Computer

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 41 of 247

Figure 3: Visualization on Smartphone

The page navigation is generated automatically (see 4)

Figure 4: Page navigation

For pages, there is a blue display variant in addition to the dark one (see 5). The selection is made in
the page properties in EibStudio, or with the corresponding command in the expert program (p. 49).

Figure 5: Blue design

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 42 of 247

Password protection

Elements

Pages can be individually protected with a user name/password in their properties dialog. The combi-
nation of user name and password must be identical across all pages. These pages are hidden in the
navigation until the user logs in on the page in the browser. After that, the page can be accessed
normally. The login data can be saved in the browser so that no new login is necessary when the
page is visited again.

6 shows an overview of the available elements.

Buttons of different width and icon count as well as multiple selection are used to switch e.g. lights or
blinds.

Sliders and color input can be used for dimming. For timers there is date and time selection. General
graphics (of any web address) are displayed with the Picture element. By means of Plink it is possi -
ble to jump to visualization pages in addition to the main navigation.

Measured values are displayed either in the chart, without further storage and with any x and y value,
or stored as a time series in a TimeBuffer and displayed by the TimeChart.

External web pages, e.g. camera images, can be displayed directly in the visualization using the
frame element.

Separation lines can be used to divide a page into sections.

In the visualization editor, the page-related variants of the elements are used, if available. For access
in the expert program, the page-related functions (e.g. pdisplay) must therefore also be used (see p.
19).

Figure 6: Elements

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 43 of 247

Functions

Templates

In addition to the self-configurable basic elements, elements with already stored functions are avail-
able, which usually comprise several elements.

Figure 7: Predefined functions in Visu

In Templates you can find complete pages that contain elements and functions already arranged.
You can also create your own page templates, for example, to quickly create similar visualization
pages in different projects.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 44 of 247

Visualization in Expert

Pages

Placement

This section is only relevant if you want to define your own pages within an expert program. As an al-
ternative to creating entire visualization pages in the expert, you can access individual visualization
elements within expert programs by assigning them an ID variable (see p. 19).

The elements from the application program are accessed using the visualization functions (from p.
207).

To add pages to the visualization in the Expert, add the following directive in an Expert program

#addto [WebServer]

After that, the commands below can be used to create pages, as well as add elements. Whether
pages defined in the expert should appear before or after the pages from the Visu can be changed in
the project settings.

To leave the web definitions section, insert

#addto [EibPC]

after the definitions. You can continue with the normal EibPC program.

Pages can be grouped together in the definition. A maximum of 128 pages are possible, with a maxi -
mum of 128 elements per page (each ID 0-127). All elements in a line are separated by one or more
spaces or tabs. The compiler detects the number of elements per line and automatically configures
the grid (1). Each element must have an ID so that it can be accessed by the user program using the
appropriate functions.

Definition

● page(ID)[$Group$,$Name$]

Arguments

● ID: Value between 1 and 100 as a site index for programming and the access to local site
elements (first letter 'p'). You can also access u08 variables of the section [EibPC]. Quick
selection (Next- and Previous page button) is given by order of page definitions. You have
to define all elements of a page between the respective page definition and the definition of
the next page.

● Group: Assignment of the page to a group. When a page is assigned to a group, the order
of definitions of the pages determine the order of pages in the selection box. In this manner
you can create groups like "Cellar", "Ground floor", et. cetera.

● Name: A static labeling text (first line).

Access to the user program

● none

The web server is built in unit sizes. All elements fit into this grid or are integer multiples thereof.
Therefore, when a four-fold height element (e.g., mpchart) is configured next to a simple-height ele-
ment,

[WebServer]

page(1) [$Demo$,$Compact$]

// the next command is default

compact(off)

// Two elements

mpchart(1) [DOUBLE, SXY]($Description1$,LINE) mpshifter(2) [$Basement$,OG][WEATHER, ICE, NIGHT, CLOCK]
$Multi$

a clearance is created in the representation as shown in 8.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 45 of 247

Figure 8: Clearance

When configuring the Web server, each line of the text configuration represents a web server display
line. In the "switched off" (compact (off)) mode, the elements of different heights are always arranged
in one line, that is, the actual line height of the representation is indicated by the max. Height of all el -
ements in the respective line. This creates the clearance in the web server. In other words, in the
representation additional non-visible elements are placed under the elements. 9 shows this "alloca-
tion" of the unit sizes (shown in blue) of the above web configuration.

Figure 9: Illustration of the unit sizes

The eibparser already displays the configuration in the Messages window:

====== Seite: 01/Demo ======

 mchart (1) - mpshifter (2) -

 | | o o

 | | o o

 | | o o

In this case, a cross-bar ("-") means that the element to the right occupies this "place", i.e. this unit
size, a vertical bar "|" means that the element above occupies this place. A round circle is an empty
element (none) generated automatically or by the user. In 9 the automatic generated free spaces are
shown in blue. This output thus clearly illustrates the user's visualization of the structure as it is dis -
played by the web server.
If you now want to use the free space to the right of the diagram, the configuration has to be
changed. e.g.: one would like to set additional multibuttons beside the graphics.

page(1) [$Demo$,$Compact$]

// the next command is default

compact(on)

mpchart(1) [DOUBLE, SXY]($Description1$,LINE) mpshifter(2) [$Basement$,OG][WEATHER, ICE, NIGHT, CLOCK]
$Multi$

mpshifter(3) [$Keller$,OG][PLUS, TEMPERATURE, Minus] $Multi$

mpshifter(4) [$Keller$,OG][PLUS, TEMPERATURE, Minus] $Multi$

mpshifter(5) [$Keller$,OG][PLUS, TEMPERATURE, Minus] $Multi$

The first line is as before. Now the clearances of 8 can be used when working in Compact mode. In
Compact mode, the elements are not arranged in rows at different heights. Since the line

mpchart(1) [DOUBLE, SXY]($Description1$,LINE) mpshifter(2) [$Basement$,OG][WEATHER, ICE, NIGHT, CLOCK]
$Multi$

configures a mpchart with a double-width and four-fold height, its display projects down into three fur -
ther lines.

In the lines
mpshifter(3) [$Basement$,OG][PLUS, TEMPERATURE, Minus] $Multi$

mpshifter(4) [$Basement$,OG][PLUS, TEMPERATURE, Minus] $Multi$

mpshifter(5) [$Basement$,OG][PLUS, TEMPERATURE, Minus] $Multi$

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 46 of 247

elements with double width and simple height are installed. Through the first element two additional
unit elements in the line are already "invisible". The eibparser already outputs this line overflow by is-
suing the "-" or "|" characters: aus:

 ====== Seite: 01/Demo ======

 mchart (1) - mpshifter (2) -

 | | mpshifter (3) -

 | | mpshifter (4) -

 | | mpshifter (5) -

See 10, which is now output by the web server:

Figure 10: Compact mode

The compact(ON) statement can be used to enable the placement of elements of different heights
next to each other. The web server itself calculates the heights overflow in the next line. The user
may not place any none elemente elements here, if the width is not to be increased. 11 shows again
schematically the arrangement of the elements, as is already output in the eibparser.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 47 of 247

In the mode with compact (on) of the web server, the user must therefore take into account the size
of the web element in the next line of the configuration in order to control the arrangement of the web
elements. If you want to generate a free line with consideration of line overflows, you must work with
the empty element.
The following example illustrates this

page(1) [$Demo$,$Compact$]

// the next command is default

compact(on)

mpchart(1) [DOUBLE, SXY]($Description1$,LINE) mpchart(2) [DOUBLE, SXY]($Description$,LINE)

mpshifter(3) [$Basement$,OG][WEATHER, ICE, NIGHT, CLOCK] $Multi$

The first two elements occupy 2 unit widths and 4 unit heights. After the line break in the configura-
tion of the two mpcharts a new line starts in the representation. This has a "carry" of two times two
occupied unit elements. Then a mpshifter is configured in the next line. Therefore, the side must be
at least 6 unit elements wide. This is also output by the eibparser:

====== Seite: 01/Demo ======

 mchart (1) - mchart (2) - o o

 | | | | mpshifter (3) -

 | | | | o o

 | | | | o o

Ultimately, the Web server will output a representation as in 12:

If you now want the four-button button to be displayed below the two graphs, empty elements must
be configured as follows:

page(1) [$Demo$,$Compact$]

// the next command is default

compact(on)

mpchart(1) [DOUBLE, SXY]($Description1$,LINE) mpchart(2) [DOUBLE, SXY]($Description1$,LINE)

empty

empty

empty

mpshifter(3) [$Basement$,OG][WEATHER, ICE, NIGHT, CLOCK] $Multi$

The three Empty elements now insert empty lines or skip one line in the display. Also here this can
already be recognized in advance by means of the output specified by the eibparser in the message
window:

====== Seite: 01/Demo ======

 mchart (1) - mchart (2) -

 | | | |

 | | | |

 | | | |

 mpshifter (3) - o o

New Page

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Figure 12: Representation example for line feed

Figure 11: „compact“ with grid (for illustrative purposes)

Visualization S. 48 of 247

Compact mode

Password protection

Definition

• compact (State)

Arguments

• State 0 / 1 or ON/OFF

Definition

● user $Name$ [Password]

Arguments

● Name: Username. This user has access to the correspondent page.

● Password: The defined user needs this password in order to have access to the corre-
spondent page.

Access to the user program

● none

The user password is not transmitted in plain text, even if the page is accessed via http instead of
https. Nevertheless, it is recommended to always open the visualization via https locally as well.

Example:

[WebServer]

page(1) [$User administration$,$page 1$]

user $Michael$ [PasswordM]

user $Florian$ [PasswordF]

button(1) [INFO] $page 1$

page(2) [$user administration$,$page 2$]

// Passwords are going to overtaken

user $Michael$

user $Florian$

button(1) [INFO] $page 2$

page(3) [$user administration$,$page 3$]

// This page is only for Michael

// Password is going to overtaken

user $Michael$

button(1) [INFO] $page 3$

page(4) [$user administration$,$page 4$]

// This page is only for Stefanie

// Password has to be specified, because this user was not mentioned on the pages before

user $Stefanie$ [Sgood]

button(1) [INFO] $page 4$

page(5) [$user administration$,$Seite 5$]

// All users

button(1) [INFO] $page 5$

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 49 of 247

Color scheme

Placeholder (Compact mode)

Placeholder

Definition

● design $DESIGNSTRING$ [$Link/Path$] [$CSS-Style$]

Arguments

● $DESIGNSTRING$ can be $black$ for a black design (well suited for wall mounted touch
panels or smart phones)

● $DESIGNSTRING$ can be $blue$ for a blue design shown in the screen shots.

● The design command can configure each site differently

● $Link/Path$ is a link to an internal stored image (see p. 23) or to an external server provid-
ing the image. The image will not be scaled. The position of the web elements is not influ -
enced by this image, none-elements will be transparent.

● $CSS-Style$ definines an optional CSS „style“ attribute for the background container. It
can be used to customize the page background:
Example:
design $black$ [$/upload/livingroom.jpg$] [$background-position:center;filter:blur(4px)$]
(added in EibStudio 4.113, Firmware 4.114).

Figure 13: background graphics

Definition

● empty

Insert an empty row also in compact mode

Definition

● none

Arguments

● None. An empty element of single width is inserted into the web server.

Access to the user program

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 50 of 247

Separator

Header

Footer

Zoom

Definition

● line [$Text$]

Arguments

● None. The element inserts a divider between two lines.

● The text is fixed at the divider and is optional.

Access to the user program

● none

The following configuration options have no effect on Responsive Visu from firmware
5.000 and are for documentation purposes only.

Definition

● header(number) $www.link$

Arguments

● If number assumes the value 0, header is hidden. You can also access u08 variables of

the section [EibPC].

● The link (incl. path and leading http://) is optional. The URL can access an extern resource.

In this case the number must be set to 2.

● The header is configurable, but then equal for each site.

Access to the user program

● none

Definition

● footer(number) $WWW-Link$

Arguments

● If number assumes the value 0, footer is hidden. You can also access u08 variables of the

section [EibPC].

● The link (incl. path and leading http://) is optional. The URL can access an extern resource.

In this case the number must be set to 2.

● The footer is configurable, but then equal for each site.

Access to the user program

● none

Definition

● mobilezoom(Factor)

Arguments

● Factor: integer value from 0 to 255 as a zoom factor in percent for the zoom of the visual-
ization on mobile devices or Android-bayed panels. The zoom factor only affects the page
that was initially defined with a previous page configuration

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 51 of 247

Elements Group Element Description

button

button,

pbutton

The graphic constituting the actual control panel can be modified by the user
program. The first line of text is static (only changeable at the configuration).
The second line can be modified by the user program, e.g. to display vari-
ables.

shifter,

pshifter

The graphic can be modified by the user program. The first line of text is
static (only changeable at the configuration). The second line can be modi-
fied by the user program.

shifter,

pshifter

The right graphic can be modified by the user program. The left graphic can
be modified only at the configuration. The first line of text is static (only
changeable at the configuration). The second line can be modified by the
user program.

shifter,

pshifter

The middle graphic can be modified by the user program. The outer graph-
ics can be modified only at the configuration. The first line of text is static
(only changeable at the configuration). The second line can be modified by
the user program.

shifter

The right graphic can be modified by the user program. The other graphics
can be modified only at the configuration. The first line of text is static (only
changeable at the configuration). The second line can be modified by the
user program.

mbutton

mbutton,

mpbutton

The graphic constituting the actual control panel can be modified by the user
program. The first line of text is static (only changeable at the configuration).

The active selection can be modified by the user program, with the latter
having to adjust the state of the graphic. No text can be displayed in the
second line.

The listbox can administer a maximum of 254 entries. By operating the list-
box, a signal which can be queried by the functions mbutton (page 208) and
mpbutton (page 208), respectively, is sent to the application program.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 52 of 247

Group Element Description

mshifter,

mp-
shifter

The graphic constituting the actual control panel can be modified by the user
program. The first line of text is static (only changeable at the configuration).
The second line can be modified by the user program.

The listbox can administer a maximum of 4 entries. By operating the listbox,
a signal which can be queried by the functions mbutton (page 208) and mp-
button (page 208), respectively, is sent to the application program.

mshifter,

mp-
shifter

The right graphic can be modified by the user program. The left graphic can
be modified only at the configuration. The first line of text is static (only
changeable at the configuration). The second line can be modified by the
user program.

The listbox can administer a maximum of 4 entries. By operating the listbox,
a signal which can be queried by the functions mbutton (page 208) and mp-
button (page 208), respectively, is sent to the application program.

mshifter,

mp-
shifter

The middle graphic can be modified by the user program. The outer graph-
ics can be modified only at the configuration. The first line of text is static
(only changeable at the configuration). The second line can be modified by
the user program.

The listbox can administer a maximum of 4 entries. By operating the listbox,
a signal which can be queried by the functions mbutton (page 208) and mp-
button (page 208), respectively, is sent to the application program.

mshifter,

mp-
shifter

The right graphic can be modified by the user program. The other graphics
can be modified only at the configuration. The first line of text is static (only
changeable at the configuration). No text can be displayed in the second
line.

The listbox can administer a maximum of 4 entries. By operating the listbox,
a signal which can be queried by the functions mbutton (page 208) and mp-
button (page 208), respectively, is sent to the application program.

slider

pslider

The image and the position of the sliders can be set in the application por-
gramm with the functions setslider and setpslider. Clicking the button ele-
ment triggers the functions mbutton (page 208) and mpbutton (page 208),
respectively.

eslider

peslider

The image and the position of the sliders can be set in the application por-
gramm with the functions setslider and setpslider. Clicking the button ele-
ment triggers the functions mbutton (page 208) and mpbutton (page 208),
respectively. The mininum, the maximum value and the increment can be
parametrized.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 53 of 247

Group Element Description

chart

chart,

pchart

This element serves the purpose of visualizing a time series. The labeling of
the y-axis is defined at the configuration. The labeling of the x-axis can be
modified by the user program. When calling the function webdisplay, the XY
diagram is activated. Values from the field 1...30 can be represented. 0
means no representation. The values are displayed starting from the left.
When the end is reached after 47 calls, the values are shifted to the left.

mchart

mpchart

The pairs of variates are addressed by the application program via the func-
tion mchart. One element mchart administers up to 4 XY charts that can be
supplied with data via the identical function mchart in the application pro-
gram. A maximum of 4 diagrams can be defined, each having a labeling of
its own (inserted in the top right corner). Up to 47 floating-point values are
displayed. The scale is generated automatically.

mchart

mpchart

like above, though double height.

picture

An external link to a graphic is integrated. The graphic can be left-justified,
centered or right-justified.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 54 of 247

Group Element Description

Link

frame

dframe

Embedding an external website

pLink

Link to an internal page (simple button)

Link Link to an external page (simple button)

Decora-
tions

line

Enforces an empty line with a divider in the web server arrangement. The
caption is optional.

none An empty field of single width.

Table 1: Overview of web elements.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 55 of 247

Element Definitions

Switch of single width (global)

Switch of single width (page-depen-

dent)

Definition

● button(ID)[Image] $Text$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access variables of the section [EibPC].

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Text: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function display (page 209).

● It is a global button. I. e. if the there are equal definitions on more than one pages, all but-
tons with this ID are affected at all pages.

● Activation of the buttons has to be evaluated by the function button (page 207).

Definition

● pbutton(ID)[Image] $Text$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access variables of the section [EibPC].

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Text: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function pdisplay (page 210).

● The element is assigned to only one side

● Activation of the buttons has to be evaluated by the function pbutton (page pbutton).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 56 of 247

Switch with selection of single width

(global)

Switch with selection of single width

(page-dependent)

Definition

● mbutton(ID)[$Text1$,$Text2$,... $Text254$][Image] $Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access variables of the section [EibPC].

● Text1, Text2, .. Text254: label texts for mbutton. The second and following elements are
optional.

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Label: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function display (page 209).

● It is a global button. I. e. if the there are equal definitions on more than one pages, all but-
tons with this ID are affected at all pages.

● Activation of the buttons has to be evaluated by the function mbutton (page mbutton).

● Switching of the listbox (providing the active listbox element) is arranged by the function
display (page display)

Definition

● mpbutton(ID) [$Text1$,$Text2$,...$Text254$][Image] $Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access variables of the section [EibPC].

● Text1, Text2, .. Text254: label texts for mbutton. The second and following elements are
optional.

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Label: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function pdisplay (page 210). Switching of the
listbox (providing the active listbox element) is also arranged by this function.

● Activation of the buttons has to be evaluated by the function mpbutton (page 208).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 57 of 247

Switch of double width (global)

Switch of double width (page-depen-

dent)

Definition

● shifter(ID)[Image1, Image2, Image3, Image4]$Text$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access variables of the section [EibPC].

● Image1 to Image4: A value between 0 and 99. To arrange the application more clearly,
constants have been predefined (page 68).

● Image2 to Image4 are optional.

● If only three images are defined, the element has only three buttons etc..

● Text: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function display (page display).

● The operation of the buttons has to be evaluated by the function button (page 207).

Definition

● pshifter(ID)[Image1, Image2, Image3, Image4]$Text$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access variables of the section [EibPC].

● Image1 to Image4: A value between 0 and 99. To arrange the application more clearly,
constants have been predefined (page 68).

● Image2 to Image4 are optional.

● If only three images are defined, the element has only three buttons etc..

● Text: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function pdisplay (page 210).

● The operation of the buttons has to be evaluated by the function pbutton (page 207).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 58 of 247

Switch with selection of double width

(global)

Switch with selection of double width

(page-dependent)

Definition

● mshifter(ID)[$Text1$,$Text2$,...,$Text254$][Image1, Image2, Image3, Image4]
 $Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access variables of the section [EibPC].

● Image1 to Image4: A value between 0 and 99. To arrange the application more clearly,
constants have been predefined (page 68).

● Image2 to Image4 are optional.

● If only three images are defined, the element has only three buttons etc.

● Text1, Text2, .. Text254: labels for the mshifter. The second and following elements are
optional.

● Label: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function display (page 209). Switching of the
listbox (providing the active listbox element) is also arranged by this function.

● Activation of the buttons has to be evaluated by the function mbutton (page 208).

Definition

● mpshifter(ID)[$Text1$,$Text2$,...,$Text254$][Image1, Image2, Image3, Image4] $Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access u08 variables of the section [EibPC].

● Image1 to Image4: A value between 0 and 99. To arrange the application more clearly,
constants have been predefined (page 68).

● Image2 to Image4 are optional.

● If only three images are defined, the element has only three buttons etc.

● Text1, Text2, .. Text254: labels for the mpshifter. The second and following elements are
optional.

● Label: A static labeling text (first line).

Access by the user program

● The Image and the text are accessed by the function pdisplay (page 210). Switching of the
listbox (providing the active listbox element) is also arranged by this function.

● Activation of the buttons has to be evaluated by the function mpbutton (page mpbutton).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 59 of 247

Simple Chart (global)

Simple Chart (page-dependent)

Chart with multiple graphs (global)

Definition

● chart(ID)[$Y0$,$Y1$,$Y2$]

Arguments

● ID: A value between 0 and 255 as an index for programming and the access to this ele-
ment.

● $Y0$, $Y1$,$Y2$: Labeling of the y-axis.

Access by the user program

● The y-values are accessed in the user program by the function chart (page 217).

● Values from the field 1...30 can be represented. With every call of this function, the values
are displayed starting from the left. When the end is reached after 47 calls, the values are
shifted to the left.

Definition

● pchart(ID)[$Y0$,$Y1$,$Y2$]

Arguments

● ID: A value between 0 and 255 as an index for programming and the access to this ele-
ment.

● $Y0$, $Y1$,$Y2$: Labeling of the y-axis.

Access by the user program

● The y-values are accessed in the user program by the function pchart (page 217).

● Values from the field 1...30 can be represented. With every call of this function, the values
are displayed starting from the left. When the end is reached after 47 calls, the values are
shifted to the left.

Definition

● mchart(ID) [Size,Type]($Label1$,Style1,
$Label2$,Style2, $Label3$,Style3, $Label4$,Style4)

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.

● Size: SINGLE (2x2), DOUBLE (4x2), HALF (2x1), LONG (4x4)

● Type: Value 9 (or constant SXY) for plots with sorted X-Y sets (well suited for time-based
plots)

● $Label1$.. $Label2$ Legend of the graph

● Style1, Style2, Style3, Style4: value 0,1,2 or 3 (constant LINE, DOTS, LINEDOTS, COL-
UMN)

Access by the user program

● XY values are accessed with the function mchart in the user program. A mchart manages
up to 4 XY diagrams. The number of diagrams is specified through the number of argu-
ments.

● Each XY diagram has a legend. When you display 4 XY diagrams, also 4 legend are dis -
played.

● 47 floating point values are display in a diagram. The scale is generated automatically.
Please consider the additional information given by the function mchart.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 60 of 247

Chart with multiple graphs (page-de-

pendant)

Definiition

● mpchart(ID) [Height,Type]($Label1$,Style1,
$Label2$,Style2, $Label3$,Style3, $Label4$,Style4)

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.

● Height: Value 0 or 1 (or constant SINGLE and DOUBLE)

● Type: Value 8 (or constant XY) for plots

● Type: Value 9 (or constant SXY) for plots with sorted X-Y sets (well suited for time-based
plots)

● $Label1$.. $Label2$ Legend of the graph

● Style1, Style2, Style3, Style4: value 0,1,2 or 3 (constant LINE, DOTS, LINEDOTS, COL-
UMN)

Access by the user program

● XY values are accessed with the function mpchart (page 218) in the user program. A
mchart manages up to 4 XY diagrams. The number of diagrams is specified through the
number of arguments.

● Each XY diagram has a legend. When you display 4 XY diagrams, also 4 legend are dis -
played.

● 47 floating point values are display in a diagram. The scale is generated automatically.
Please consider the additional information given by the function mpchart on page 218.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 61 of 247

TimeChart (global) Definition

● mtimechart (ID) [size, type, length, YLMIN, YLMAX, YRMIN, YRMAX] ($Description1$,
ChartPos1, Buffer1, $Description2$, ChartPos2, BUFFER2, $Description3$, ChartPos3,
buffer3, $Description4$, ChartPos4, Buffer4)

● $Description1$, CHARTPOS1, Buffer1, $Description2$,...(up to 4 graphs)

Arguments

● ID: A value between 0 and 127 as an index for programming and access to this element.

● Size: DOUBLE, TRIPLE, QUAD, LONG, EXTDOUBLE, EXTTRIPLE, EXTLONG

● Type: 0 for auto scale to the left axis, in this case YLMAX is ignored etc.(0=AU-
TOSCALELEFT)

1 for autoscale the right axis , in this case YRMAX is ignored etc. (1=AUTOSCALERIGHT)

2 for auto scale of the two axes (2=AUTOSCALE)

3 for no autoscale (3=NOAUTOSCALE)

● Length: Maximum number of pairs of values that can be displayed per graph (Possible
values : from 32 to 256)

● YLMIN : Minimum value left y-axis, floating point numbers

● YLMAX : Maximum value left y-axis, floating point numbers

● YRMIN : minimum value right y-axis, floating point numbers

● YRMAX : maximum value right y-axis, floating point numbers

● $Description1$... $Description4$ Legend of the corresponding graphs

● ChartPos : 0 (LEFTGRAF) or 1 (RIGHTGRAF) (0 for marking on the left y-axis, for one
caption on the right y-axis) or 2 (STACK) for graphically adding two graphs: The outermost
envelope is to be understood as the total sum of the individual graphs:

● Buffer: ID of the graphs associated with the respective time buffer. Values between 0 and
255 as an index for the programming and the access.

To ensure proper operation, the buffer and arts must be dimensioned so that the memory
of EibPC is not overloaded. See here under timebufferconfig (p. 219) for more details.

● The formats EXTDOUBLE, EXTTRIPLE, EXTLONG are Count with integrated zoom, shift
function and time delay setting.

Access in the user program

● The XY values in the user program using the function timebufferadd (p. 219) and time-
bufferconfig (p. 219) addressed. An art manages up to 4 XY charts. The number of charts
is determined by the number of arguments.

● Each XY chart has a legend. In Preparation of 4 XY graphs in the diagram 4 legends are
displayed.

● Up to 65535 floating-point values are presented. For scaling note here notes in the descrip-
tion of user functions timebufferadd (p. 219) and timebufferconfig (p. 219)

● mtimecharts are always global.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 62 of 247

Color of graphs (page-dependant) Definition

● timechartcolor ID #HtmlFarbCode
Changes the color value of the graph with the ID (1,2,3,4) of the timecharts. The formatting
is identical to the usual HTML color coding function, see (https://wiki.selfhtml.org/wiki/
Grafik/Farbpaletten)

● This setting is valid globally for all graphs and is placed behind a page command.

Example

[WebServer]

page (wsMeter) [$Smartmeter$, $Measuring$

timechartcolor 1 #337755

timechartcolor 2 #e5a000

timechartcolor 3 #0066ff

timechartcolor 4 #ffff00

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

https://wiki.selfhtml.org/wiki/Grafik/Farbpaletten
https://wiki.selfhtml.org/wiki/Grafik/Farbpaletten

Visualization S. 63 of 247

Picture (page-dependant) Definition

● picture(ID)[Height,Type]($Label$,$www-Link$)

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.

● Height: Value 0 or 1 (or constant SINGLE and DOUBLE) or Width x Height: any number for
height and width as factor of the unit size of the elements of the web server.)

● Type: Value 0,1,2 (or LEFTGRAF, CENTERGRAF, ZOOMGRAF): left aligned, centered or
streched embedding of the image

● www-Link: Valid WWW address (incl..Path and leading http://) to the external image

Access by the user program

● Label and link can be changed during runtime with the function picture (p. 214).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 64 of 247

Simple Slider (global)

Simple Slider (page-dependant)

Extended Slider (global)

Definition

● slider(ID)[Image]$Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access u08 variables of the section [EibPC].

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Label: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function display (page 209).

● Activation of the slider has to be evaluated by the function getslider (page 211).

● Changing the slider level has to be done by the function setslider (page 212).

● Activation of the button has to be evaluated by the function button (page 207).

● The input field can be used to directly manipulate the slider value in the web interface.

Definition

● pslider(ID)[Image]$Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access u08 variables of the section [EibPC].

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Label: A static labeling text (first line).

Access by the user program

● The image and the text are accessed by the function pdisplay (page 210).

● Activation of the slider has to be evaluated by the function getslider (page 211).

● Changing the slider level has to be done by the function setslider (page 212).

● Activation of the button has to be evaluated by the function pbutton (page 207).

● The input field can be used to directly manipulate the slider value in the web interface.

Definition

● eslider(ID)[Image] (Min,Increment, Max) $Description$ $Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access u08 variables of the section [EibPC].

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Min: slider minimum value

● Increment: slider increment

● Max: slider maximum value

● Description: A static labeling text (first line).

● Label: a static labeling text, max. two places

Access by the user program

● The image and the text are accessed by the function display (page 209).

● Activation of the slider has to be evaluated by the function getslider (page 211).

● Changing the slider level has to be done by the function setslider (page 212).

● Activation of the button has to be evaluated by the function button (page 207).

● The input field can be used to directly manipulate the slider value in the web interface.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 65 of 247

Extended Slider (page-dependant)

Input of text, date, time, color

(global)

Definition

● peslider(ID)[Image] (Min,Increment, Max) $Description$ $Label$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access u08 variables of the section [EibPC].

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Min: slider minimum value

● Increment: slider increment

● Max: slider maximum value

● Description: A static labeling text (first line).

● Label: a static labeling text, max. two places

Access to the user program

● The image and the text are accessed by the function pdisplay (page 210).

● Activation of the slider has to be evaluated by the function getslider (page 211).

● Changing the slider level has to be done by the function setslider (page 212).

● Activation of the button has to be evaluated by the function pbutton (page 207).

● The input field can be used to directly manipulate the slider value in the web interface.

Definition

● webinput(ID)[Graphic] $Label$

Arguments

● ID: Value between 0 until 127 as index for programming and access to this element. You
can also access to u08 variable definition in the section [EibPC].

● Graphic: Value between 0 and 99. In order to design the implementation clearly are pred-
ifined terms defined (page 68).

● Label: A static text below the picture

● Style is optional. Possible characteristics are

○ none: The output of webinput is a regular string.

○ PASSWORD: In this case, the input is hidden with asterisks or characters specified
by the web browser. The output of webinput is a regular string.

○ DATEPICK: Enter a date using a standard dialog (depending on the web browser).
The output of webinput is a string in the representation $ YYYY-MM-DD $

○ TIMEPICK: Enter a time using a standard dialog (depending on the web browser).
The output of webinput is given as a string in the representation $ HH-MM-SS $

○ COLORPICK: The input of an RGB color using a standard dialog (depending on the
web browser). The output of webinput (p. 222) is a 24-bit string.

Access to the user program

● The element is addressed via function webinput (p. webinput).

● The image and the text are accessed by the function display (page 209).

● Elements of web input are always global.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 66 of 247

Versatile output area (global) Definition

● weboutput(ID)[Dimension,style]

Arguments

● ID: Value between 0 until 127 as index for programming and access to this element. You
can also access to u08 variable definition in the section [EibPC].

● Dimension: Value 0, 1 or 2...5(respectively constant SINGLE, DOUBLE and QUAD, or
Width x Height: any number for height and width as factor of the unit size of the elements
of the web server.)

● Style: Value 0,1,2 (respectively constant ICON and NOICON, NOCOLOR)

Access to the user program

● The element is addressed via function weboutput (p. 222).

● Elements of weboutput are always global.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 67 of 247

Internal link (page-dependant)

External link (page-dependant)

Embed external Website (global)

Definition

● plink(ID)[Image] [PageID] $Text$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access u08 variables of the section [EibPC]. (This element is optically identic
to the element button)

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● PageID: Value between 1 and 100 as index of the page, to which the user jumps, when the
link is activated. You can also access u08 variables of the section [EibPC].

● Label: A static labeling text (first line).

Access to the user program

● The image and the text are accessed by the function pdisplay (page 210).

● With the function plink (page 215) link, icon and text can be changed dynamically at run
time.

Definition

● link(ID)[Image][$Website$] $Text$

Arguments

● ID: Value between 0 and 127 as an index for programming and the access to this element.
You can also access u08 variables of the section [EibPC]. (This element is optically identi-
cal to the element button)

● $Website$ http address (incl. path and leading http://) of the destination site

● Image: A value between 0 and 99. To arrange the application more clearly, constants have
been predefined (page 68).

● Label: A dynamically labeling text (first line).

Access to the user program

● With the function link (page 67) the web site, icon and text can be changed dynamically at
run time.

Definition

● frame [$Text$]

Arguments

● Text: A WWW link (incl. path and leading http://) to a external HTML site, which is inte-
grated in the webserver

Access to the user program

● none

Definition

● dframe [$Text$]

Arguments

● Text: A WWW link (incl. path and leading http://) to an external HTML site, which is inte-
grated in the webserver. The embedded window is twice as high as this from the frame el-
ement.

Access to the user program

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Visualization S. 68 of 247

Icons The EibPC has a built-in set of icons.

See The icons listed in 3. In the visualization editor they are selected directly when configuring the el-
ement. In the [WebServer] section as well as in the user program they are selected by name or nu-
merical index. Each symbol can be displayed in different forms. The states listed in Table 3 exist for
this purpose.

These can be addressed directly by their index (group of symbols) and their sub-index (design).

The following symbol groups exist, which can be addressed in the section [WebServer] as well as in
the user program as a corresponding argument directly via the name or the number.

Note: Not every symbol group implements all possible states. (see also below).

Symbol Index

DARKRED 0u08

INACTIVE 1u08

ACTIVE 2u08

DISPLAY 3u08

STATE4 4u08

STATE5 5u08

STATE6 6u08

STATE7 7u08

STATE7 8u08

BRIGHTRED 9u08

Table 2: Overview of states.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 69 von 247

Symbol Index DARKRED
0u08

INACTIVE
 1u08

ACTIVE
 2u08

DISPLAY
3u08

STATE4
4u08

STATE5
5u08

STATE6
6u08

STATE7
7u08

STATE8
8u08

BRIGHTRE
D 9u08

INFO 0u08

SWITCH 1u08

UP 2u08

DOWN 3u08

PLUS 4u08

MINUS 5u08

LIGHT 6u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 70 von 247

TEMPERATURE 7u08

BLIND 8u08

STOP 9u08

MAIL 10u08

SCENES 11u08

MONITOR 12u08

WEATHER 13u08

ICE 14u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 71 von 247

NIGHT 15u08

CLOCK 16u08

WIND 17u08

WINDOW 18u08

DATE 19u08

PRESENT 20u08

ABSENT 21u08

REWIND 22u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 72 von 247

PLAY 23u08

PAUSE 24u08

FORWARD 25u08

RECORD 26u08

HALT 27u08

EJECT 28u08

NEXT 29u08

PREVIOUS 30u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 73 von 247

LEFT 31u08

RIGHT 32u08

CROSSCIRCLE 33u08

OKCIRCLE 34u08

STATESWITCH 35u08

PLUG 36u08

METER 37u08

PVSOLAR 38u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 74 von 247

THERMSOLAR 39u08

PUMP 40u08

HEATINGUNIT 41u08

HEATPUMP 42u08

FLOORHEATING 43u08

WALLHEATING 44u08

COOLER 45u08

MICRO 46u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 75 von 247

SPEAKER 47u08

RGB 48u08

LUX 49u08

RAIN 50u08

KEY 51u08

WASTE 52u08

ASK 53u08

WARN 54u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 76 von 247

NEAR 55u08

CAMERA 56u08

SIGNAL 57u08

DOOR 58u08

GARAGE 59u08

CURTAIN 60u08

ANGLE 61u08

ROLLER 62u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 77 von 247

EMAIL 63u08

PETS 64u08

PHONE 65u08

PERSON 66u08

TV 67u08

BEAMER 68u08

RADIO 69u08

RECIEVER 70u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 78 von 247

MEDIA 71u08

STOVE 72u08

FRIDGE 73u08

WASHER 74u08

DISHWASHER 75u08

HOLIDAY 76u08

SLEEP 77u08

REFRESH 78u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 79 von 247

EV 79u08

TIMER 80u08

DELAY 81u08

SCHEDULE 82u08

ALARMCLOCK 83u08

RESET 84u08

MAN 85u08

WOMAN 86u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 80 von 247

CLEANING 87u08

BEER 88u08

BATHING 89u08

WATCHINGTV 90u08

LOCK 91u08

SETTINGS 92u08

GEARS 93u08

COLORTEMPERA-
TURE

94u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 81 von 247

CHARTS 95u08

CARBATTERY 96u08

BATTERYSTORAGE 97u08

HEATPUMPVENTI-
LATION

98u08

FLUIDMETER 99u08

WATERMETER 100u08

HEATMETER 101u08

ENERGYMANAGE-
MENT

102u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 82 von 247

HEATINGROD 103u08

HOMEVENTILATION 104u08

WATERING 105u08

AIRCONDITION 106u08

AIRCONDITION-
HEATING

107u08

CHRISTMAS 108u08

STAIRSLIGHT 109u08

SPOTLIGHT 110u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 83 von 247

PENDANTLIGHT 111u08

EXTERIORLIGHT 112u08

HALLLIGHT 113u08

LEDSTRIPESCEIL-
ING

114u08

LEDSTRIPESFLOOR 115u08

MIRRORLIGHT 116u08

FLOORLIGHT 117u08

DESKLIGHT 118u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 84 von 247

CEILINGLIGHT 119u08

BATHROOM 120u08

TOILET 121u08

DININGROOM 122u08

LIVINGROOM 123u08

DRESSINGROOM 124u08

KIDSROOM 125u08

KITCHEN 126u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 85 von 247

GARAGEFILLED 127u08

BASEMENT 128u08

OFFICE 129u08

POOL 130u08

SAUNA 131u08

MAGNIFIERMINUS 132u08

MAGNIFIERPLUS 133u08

SMALLMINUS 134u08

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

 1159-HB_EibPC2_EN-39, 2023-12-20, Version S. 86 von 247

SMALLPLUS 135u08

POWERGRID 136u08

TOGGLE 137u08

FILLEDDOT 138u08

VOLTAGE 139u08

RGBSLIDER 140u08

WINDSOCK 141u08

Table 3: Overview icons

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim – mail@enertex.de

mailto:mail@enertex.de

Examples S. 87 of 247

Examples

Logic

Figure 1: Automatic Light

Example 1: A simple automatically switched-off light. Turn the light off 10 minutes after the
last “on”-event.

• Start with an empty project, import your group addresses and compile the project to update
predefined constants.

• Create a new Logic.

• Add the following node types:
OBJECTS/GROUP ADDRESS

OBJECTS/GROUP ADDRESS

OBJECTS/CONSTANT

LOGIC/AND
TIME/DELAY

• Configure the first GROUP ADDRESs node to return the current object value

• The second writes on reception of an external trigger

• Select the constant “OFF”, which represents the 0b01 for the CONSTANT node

• Configure the DELAY to trigger after 10 minutes

• Connect the nodes according to 1

• Compile and run the project

The Logic nodes are evaluated when objects change. For details, see Evaluation (p. 32). When the
light's state changes from 0b01 to 1b01, the timer is started. Once it is over, its output is 1b01. If the
light is still on (1b01), it is turned OFF (0b01) by sending a bus telegram.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 88 of 247

Expert

Send group telegrams Example 2: A switch and two telegrams

If the switch is pressed "ON", turn on a lamp and set a dimming value to 80%.
If it goes to "OFF", turn both lights off.

Background
The switch can only send a single telegram with a single type. The switching actuator requires a binary value, while
the dimming actuator needs a percentage (1 byte).

Telegrams can be sent to arbitrary group addresses by giving the address and type in single quotes,
without having to import group addresses from ETS before (p. 30).

if ('1/0/0'b01==ON) then write('1/1/1'b01,ON); write('1/1/2'u08, 80%) endif

if ('1/0/0'b01==OFF) then write('1/1/1'b01,OFF); write('1/1/2'u08, 0%) endif

Instead of the “manual” group address, a group address from the ETS project can also be used if a
project is imported (p. 15).

if ("Schalter-1/0/0"==ON) then write("Lampe-1/1/1",ON); write("Dimmer-1/1/2",80%) endif

if ("Schalter-1/0/0"==OFF) then write("Lampe-1/1/1",OFF); write("Dimmer-1/1/2",0%) endif

Example 3: Program start
Background
When the program starts, every program object is initialized to zero (p. 32). If the state of the switch 1/0/0 (or the sta-
tus of the actuator) in the example above is already ON, the switch sends OFF with the next activation. However, the
internal state of the group address object is already OFF, and no telegrams are sent by the EibPC. With the next acti -
vation, the switch becomes ON again, the internal state changes and the telegrams are sent.

Request the current state of group address "Schalter-1/0/0" when starting.

To execute an operation once when the program is started, the function systemstart changes from
0b01 to 1b01 and updates (invalidates) its dependencies. To get the current state of a group ad-
dress, the function read sends a read request to the address when invalidated.

Important: For the actuator to answer the request, the read flag has to be set within ETS.
if (systemstart()) then read("Schalter-1/0/0") endif

if ("Schalter-1/0/0"==ON) then write("Lampe-1/1/1",ON); write("Dimmer-1/1/2",80%) endif

if ("Schalter-1/0/0"==OFF) then write("Lampe-1/1/1",OFF); write("Dimmer-1/1/2",0%) endif

To send a read request on program start, the function initga can be used as a convenient alternative.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 89 of 247

Example 4: A motion detector, switches and brightness depending on the time of day
If the switch is pressed “ON“, the lamp should turn on and the dimmer should go to 100%. If it goes to OFF,
the lights will go out. If the switch is active, the motion is to be disabled.

If the motion detector sends an ON telegram, the dimmer should go to

– 50% of its luminosity, if it is after 20:00 Clock

– 30% of its luminosity, if it is after 23:00 Clock

– 10% of its luminosity, if it is after 3:00 Clock

– 100% of its luminosity, if it is after 7:30 Clock

The function htime implements the time switch (p. 129).
if (systemstart()) then \\

MotionDetector=AUS; \\

read("Switch-1/0/0") ; \\

write("Lamp-1/1/1",AUS); \\

write("Dimmer-1/1/2"u08,0%) \\

 endif

// Variables

Switch="Switch-1/0/0"

MotionDetector=“MotionDetector-1/2/0“

Dimmer=100%

// The switch

if (Switch==ON) then \\

write("Lamp-1/1/1",EIN); \\

write("Dimmer-1/1/1",EIN); \\

write("DimmerValue-1/1/2",100%) \\

endif

if (Switch==OFF) then \\

write("Lamp-1/1/1",AUS); \\

write("Dimmer-1/1/2"u08,0%) \\

endif

// Motion detector

if (htime(20,00,00)) and (Switch==OFF) then Dimmer=50% endif

if (htime(23,00,00)) and (Switch==OFF) then Dimmer=30% endif

if (htime(03,00,00)) and (Switch==OFF) then Dimmer=10% endif

if (htime(07,30,00)) and (Switch==OFF) then Dimmer=100% endif

if (MotionDetector==EIN) and (Switch==OFF) then write("Dimmer-1/1/1",EIN); write("DimmerValue-1/1/2",Dimmer) endif

if (MotionDetector==AUS) and (Switch==OFF) then write("Dimmer-1/1/1",AUS) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 90 of 247

Example 5: A staircase lighting
At system start, the light shall go out. The switch alternately provides ON and OFF telegrams. After pressing
the switch (“switch position“ should be arbitrary), the light shall turn on and automatically turn off again after
three minutes. The sum of the switching processes already made will be shown on KNX display element.

Option 1: At re-pressing the switch during the 3 minutes turn-on time, the timer switch shall not restart.

Option 2: At re-pressing the switch during the 3 minutes turn-on time, the timer switch shall restart.

Option 1:
if systemstart() then write('1/1/1'b01,OFF) endif

SwitchingOperation=OFF

if event('1/0/0'b01) then {

 SwitchingOperation=ON;

 write('1/1/1'b01,ON);

} endif

if (after(event('1/0/0'b01), 180000u64)) then {

write('1/1/1'b01,AUS);

SwitchingOperation=OFF;

} endif

The function event (p. 176) indicates, when a message is received on the bus by the given group ad-
dress. It does not check whether the message has changed, its value or type. Once a message ar-
rives, the function object's value becomes ON for a single cycle of EibPC. Thus, the condition of the
if statement is true and the body is executed.

The delay function after expects a variable or an expression of type b01 as the first argument. The
function after delays the input (ON and OFF), for the time specified in the second argument. The re-
turn value is also ON or OFF. This can be quite clearly represented graphically by 2. The second ar-
gument is of type integer, unsigned 64-bit. We therefore need the data type u64. This value specifies
the delay time in ms.

You can set delays for decades. If the function after is started once, it processes only one impulse at
its input. The result is the dead time being equal to the delay time, see 2. In the example we use a
delay of

180.000ms = 3*60*1000ms = 3*60s = 3min.

Figure 2: After-Function

The function after can not be triggered again nby the “dead time“. In our case (option 1) this is de -
sired. That is, if after has been stored once, any further changes of the input are ignored (see shad-
ing in 2).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

time in ms

t

t

Dead time

Switch

Return

OFF/ONON ON OFFOFF

Examples S. 91 of 247

Option 2. For the light circuit, the timer is to be restarted again if the light switch is pressed again.

Therefore we need the function delay (p. 134) which restarts (Re-Triggers) the timer with every rising
edge of the first argument.

Figure 3: delay-function

The program has to be changed only at one point, and we have only to replace after with delay.

if systemstart() then write('1/1/1'b01,OFF) endif

SwitchingOperation=OFF

if event('1/0/0'b01) then {

 SwitchingOperation=ON;

 write('1/1/1'b01,ON);

} endif

if (delay(event('1/0/0'b01), 180000u64)) then {

write('1/1/1'b01,AUS);

SwitchingOperation=OFF;

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

t

t

Signal

Delay

Time in ms Time in
ms

Time in ms

Restart Timer

Examples S. 92 of 247

Duration of a cycle One of the most asked questions of the user is: How much time does the EibPC in fact need for the
processing? In principal it depends on the size of program respectively the kind of programming and
occurring events. By “validation” (p. 32) of the program, only those parts of the program are activated
per cycle that actually change. Therefore in the normal case the processing is done in less than 1 ms
in more complex programs in a few ms. The time of cycle depending of the program will fluctuate.
Therefore the minimal and maximal processing time is interesting.

The delay of up to 250 ms between two consecutive cycles is configured in EibStudio (pp. 22) to exe-
cute asynchronous functions, e.g. to send emails, process webserver requests etc.

To calculate the processing time of the EibPCs, the function afterc can be used:

 afterc(variable {Typ b01}, max{Typ u64}, remaining time {Typ u64})

This function is triggered as the after-function with a change of variable (1. argument) from OFF to
on: The return value is after the specified time max (2. argument in ms) for one processing cycle to
ON. In each cycle from the beginning of the trigger pulse of variable while the remaining time vari-
able while the remaining time (3. argument) is updated as countdown timer. The initial value of vari-
able is max. The change of remaining time is always at exactly the time at which the processing is
active in one cycle. The chance of remaining time is thus the sum of the aforementioned deadtime
plus the processing time of the preceding cycle. This allows the cycle time calculated by using sys-
temstart triggers a afterc -timer and starts the countdown of remaining time e.g.

Max=1000000000000000u64

if afterc(systemstart(), max, remaining time) then { } endif

Max is here chosen as large as possible to ensure that the end of the countdown is reached not pos-
sible.

With the code

MaxZyklusZeit=max(StoppZeit-Restzeit-PerformanceZeit,MaxZyklusZeit);

MinZyklusZeit=min(StoppZeit-Restzeit -PerformanceZeit,MinZyklusZeit);

can thus be calculated with an accuracy of about ± 1ms (time slice Linux system time) the minimum
and maximum cycle time.

A special case is still taken into account: During the initialisation of the very first program run all parts
of the program must be run through, then the basis of the validation later “only when neccessary” are
evaluated. Therefore the first processing loop may well need serveral hundred ms, when the program
reaches a memory usage of about 30. The start of the countdown counter must therefore be delayed
if you do not want to take into account the initialisation of the program as a special case in the mea-
surement of cycle times.

Therefore delaying the pulse of systemstart at startup with another timer after timer by a nesting:

if afterc(after(systemstart(),10000u64), Max, Restzeit) then { ... } endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 93 of 247

In total the calculation of the cycle time as follows:

// Berechnet die minimale und maximale Zyklusdauer
// der Verarbeitung. Dabei ist die Performance-Angabe im EibStudio immer
// als Offset dabei.

Max=1000000000000000u64
Restzeit=0u64
StoppZeit=Max
MaxZyklusZeit=0u64
MinZyklusZeit=Max

// Im EibStudio ggf. geändert, Defaultwert ist 20ms

PerformanceZeit=20u64

// Die erste Zyklus kann etwas länger dauern ...
if afterc(after(systemstart(),10000u64), Max, Restzeit) then {
 StoppZeit=0u64;
} endif

MaxZyklusZeit=max(StoppZeit-Restzeit-PerformanceZeit,MaxZyklusZeit);
MinZyklusZeit=min(StoppZeit-Restzeit -PerformanceZeit,MinZyklusZeit);

The timer uses the argument afterc remaining time (s.a.) for storing the elapsed time timer. The user
must therefore ensure that various afterc timer use different variables to this store:

// Zähler 1

RestZeit1=0u64

RestZeit2=0u64

if afterc(systemstart(),10000u64, Restzeit1) then {
 write('1/2/3'c14,$Timer1$c14)
} endif

if afterc(systemstart(),13000u64, Restzeit2) then {
 write('1/2/3'c14,$Timer2$c14)
} endif

The same applies to the function

delayc(TriggerVariable {Typ b01}, Max{Typ u64}, RemaingTimest {Typ u64})

whose timer – just like delay – through every change of the TriggerVariable (1. argument) from OFF
to ON is triggered again. Again that for the rest of time each with its own variable must be used oth -
erwise disrupt the timer each other.

When the timer expires the value of 3. arguments (remaining time) to 0u64, upon triggering of the
timer it is set to the value of Max. If the remaining time is changed during an active phase by the user
so the expiration time of the timer ist changed.
RestZeit1=0u64

 if afterc(systemstart(),10000u64, remainingtime1) then {
 write('1/2/3'c14,$Timer1$c14)
} endif

if remainingtime1>1000u64 then remainingtime1=500u64 endif

remainingtime2=0u64

if delayc(systemstart(),13000u64, remainingtime2) then {
 write('1/2/3'c14,$Timer2$c14)
} endif

In the above example only the afterc timer is changed the rest of the time variable delayc timer re-
mains unchanged.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 94 of 247

Queue

Presence state machine

With this a timer can now be stopped if there is no longer need for e.g. the end of the process and
the associated action of the if-statement.

MyTrigger=OFF

remainingtime1=0u64

 if afterc(MyTrigger,10000u64, remainingtime1) then {
 write('1/2/3'c14,$Timer1$c14)
} endif

if MyTrigger== OFF then remainingtime1=0u64 endif

If in the example MyTrigger switches to ON the timer is started, if MyTrigger switches to OFF before
the expiry of the time, the timer is stopped by setting remainingtime1=0u64 . The then-branch is not
executed.

If you want to stop the timer before but running the then-branch it must RestZeit1=1u64 be set. In
this case the execution is performed in the next processing cycle.

The event-based processing in EibPC requires the programming of socalled “state machine”. The
(abstract) basic principle of a “state machine” is that programming is not performed sequentially but
that the software assumes a certain state depending on events.

When exchanging data with another device e.g. via TCP/IP telegrams, you can define the following
states:

1. Receive data from the other participants

2. Send data to the other participants

3. Cache data of the other participants

4. Evaluate the data of the other participants

5. Perform various KNX actions on the bus

Each of these conditions is at least in principle independently of the other i.e. the EibPC has to ac -
cept data while e.g. KNX telegrams arrive. In addition various states can “triggering” each other re-
spectively the arrival of a KNX telegram encourage the data processing.

A user wants to use the macro At_Sunset_Capped_withRelease to send a group telegram at
sunset, but at latest at a given time.

In the same way the macro is used: At_Sunset_Capped_withRelease at sunset.

Bei_Sonnenuntergang_Gedeckelt_mitFreigabe(Sued,FreigabeVar,"Licht Wohnen-
2/2/3",AUS,22060000,22,31,00)

Bei_Sonnenaufgang_Gedeckelt_mitFreigabe(Sonnenaufgang1,FreigabeVar,"Rolläden Ost-
5/2/0",RAUF,7200000,07,28,00)

The macros are parameterized with the release-variable FreigabeVar .

For this purpose the release is divided into the following observation periods:

• Day mode: Sunrise to sunset

• Early mode: Period after 0:00 clock and before sunrise

• Late mode: After sunset and not after 0:00 clock

The user presses a group address "Presence-8/1/1" (Typ b01, ON==present).

The release-variable FreigabeVar should be switched dependent on the following states.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 95 of 247

Presence simulation

State 1:

Description:

Early mode

Target:

It should not be run through a macro regardless of whether "Presence-8/1/1" is ON or OFF.

FreigabeVar has to be set to OFF respectively has to remain in the (OFF-)-condition.

State 2:

Description:

Day mode

Target:

If "Presence-8/1/1" is set to ON, FreigabeVar has to be set to ON, the macros will be acti-
vated, if "Presence-8/1/1" is set to OFF. FreigabeVar should set to OFF the macros will be
deactivated.

If the group address "Presence-8/1/1" is changed (bus telegram/user) should the Freiga-
beVar immediately accept its value.

State 3:

Description:

Late mode

Target:

If"Anwesenheit-8/1/1" is set to ON, ReleaseVar should be set to ON, the macros so are
activated, if "Presence-8/1/1" is set to OFF. FreigabeVar should be set to OFF the macros
will deactivated.

This can now directly be converted into a program:
FreigabeVar=AUS

TFrueh=chtime(00,00,01) and !chtime(12,00,00)

// Zustand 1: Frühmodus

if TFrueh and !sun() then FreigabeVar=AUS endif

// Zustand 2: TagModus

if sun() and change("Anwesenheit-8/1/1") then FreigabeVar="Anwesenheit-8/1/1" endif

// Zustand3 Spätmodus

if !TFrueh and !sun() then FreigabeVar="Anwesenheit-8/1/1" endif

Especially here is the use of variable TFrueh. This is realized via a link from one timer at midnight
and a second at noon. This is ensures that TFrueh is set at 0:00 clock to ON and from the afternoon
to OFF.

The macro collection includes macros for presence simulation. The basis concept of these macros is
to be explained in the following.

With a presence simulation two states can be differentiated.

1. Record

During this phase selected group addresses are recorded before. Group telegrams are of-
ten triggered by residents e.g. upon actuation of switches. The recording is usually per-
formed over a 2-week interval in which the recording continuously overwrites the old val -
ues.

2. Play

If the resident of a property e.g. goes on vacation the group telegrams will now be triggered
by the EibPC so that outsiders will have the impression of presence of the residents. There
the play has to take place same day and time, so that e.g. the recording of Saturday is
played on a Saturday again too.

As above mentioned conditions the following is needed:

• Determination of raw data of the telegrams

• Determination of sending group address

• Determination of telegrams arrival time

• Recording of data

• Sending of raw data time-shifted to the bus

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 96 of 247

Determination of sending group address

For this task you need the function readrawknx:

readrawknx(Sim_Control {u08}, Sim_Sender{u08}, Sim_GA{u08}, Sim_IsGA{b01},
Sim_RoutingCnt {u08}, Sim_Len{u08}, Sim_Data{c1400})

If any KNX telegram is observed on the bus the function readrawknx updated its arguments. In this
case the arguments of the function are “filled” with data. The received user data are then copied to
the argument Sim_Data , the amount of data (bit length) can be queried with the variable Sim_Len .

Upon receipt of a telegram the argument Sim_IsGA is set accordingly, i.e. is it an ordinary group tele-
gram so this argument is set by readrawknx to ON and Sim_GA contains the address itself. The
function readrawknx can be linked to event in order to process the arrival of a telegram

With the selected definitions
Sim_GA=0u16

Sim_IsGa=OFF

Sim_RoutingCnt=0

Sim_Len=0

Sim_Data=$$c4000

Recorder=$$c4000

Timestamp=$$c4000

you can now process the arrival of a telegram as follows:

if event(readrawknx(Sim_Kontroll,Sim_Sender,Sim_GA,Sim_IsGa,Sim_RoutingCnt,Sim_Len,Sim_Data)) then

It should be noted that the group address Sim_GA is calculated as 16-bit value. In order to compare
this address with the usual spelling is the function getaddress at your disposal. In the following exam-
ple

MeinGA=getaddress("Licht-1/2/3")

there is now MeinGA the 16-bit value which represents the group address and how this is also
copied Sim_GA. Now it is determined out of which group address the arrived telegram has been
sent.

With the help of variables

Sim_GA=OFF

should the recording of an incoming message be triggered as follows. For each recorded group ad-
dress are if-queries deposited. Sim_GA is determined as above mentioned by readrawknx .

Code-part 1
if Sim_GA==getaddress("Heizvorlauf-0/0/1") then Sim_MyGA=ON else Sim_MyGA=OFF endif

if Sim_GA==getaddress("Temperatur-3/5/0") then Sim_MyGA=ON else Sim_MyGA=OFF endif

if Sim_GA==getaddress("Licht-1/0/29"u16) then Sim_MyGA=ON else Sim_MyGA=OFF endif

The both modes Record/Play are realised via

Sim_Play=OFF

At Sim_Play = ON the existing recording should be played and at OFF the recording should be
started.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 97 of 247

Determination of raw data of the telegrams

Now it is necessary how the raw data of the telegrams on the bus can be determined. For this pur-
pose

Code-part 2
if event(readrawknx(Sim_Kontroll,Sim_Sender,Sim_GA,Sim_IsGa,Sim_RoutingCnt,Sim_Len,Sim_Data)) and
Sim_Len!=0 and Sim_IsGa and !Sim_Play then {

 if !Sim_MyGA then Sim_Next=OFF endif;

 if Sim_MyGA then {

 if Sim_Len==1 then Sim_RawData=convert(stringcast(Sim_Data,0u08,1u16) and 0x7F,0u32) endif;

 if Sim_Len==2 then Sim_RawData=convert(stringcast(Sim_Data,0u08,2u16),0u32) endif;

 // Byte Order has to be considered

 if Sim_Len==3 then Sim_RawData=convert(stringcast(Sim_Data,0u08,2u16),0u32)*256u32
+convert(stringcast(Sim_Data,0u08,3u16),0u32) endif;

 if Sim_Len==5 then Sim_RawData=convert(stringcast(Sim_Data,0u08,2u16),0u32)*16777216u32
+convert(stringcast(Sim_Data,0u08,3u16),0u32)*65536u32+convert(stringcast(Sim_Data,0u08,4u16),0u32)*2
56u32+convert(stringcast(Sim_Data,0u08,5u16),0u32) endif;

 Sim_Next=ON;

 } endif;

}endif

Sim_RawData are raw data in u32 format. If only one bit has been sent, so 31 bits are “unused”. Die
incoming data are written from readrawknx in Sim_Data string variable. These are basically regarded
as raw data and then be converted into u32 bit value.The arrangement of data in 4 bytes (32bits) uni-
fies the saving of the telegrams data and simplifies the method (how to show yet).

For processing these raw data on string Sim_RawData now the single bytes have to be interpreted
as 1-byte integer values. This happens with the help of function stringcast.

X=stringcast(src{cxxxx}, dest, Pos{u16})

This function start to look at the bytes on string src from the byte-position Pos. dest on there gives
the target data type conversion on, which specifies the number of bytes and defines the conversion
to the result X. Based on 3 it is explained: The graphic shows the string as byte arrangement. At po-
sition 3{u16} the value is hexadecimal 0x74.

0x10 0xXX 0xXX 0x74 0xA00xXX 0x10 0x01 0xXX 0xXX 0xXX0xE1

3u16 4u16 5u16 6u16

0xXX 0xXX

Figure 4: String src as arrayfield.

A statement Z1=stringcast(src,0,3u16) will define a variable Z1 from the data type u08 (argument „0“)
. The value is obtained from src (4) on position 3{u16} and is thus in this case 0x74 (dezcmal 116). A
statement Z2=stringcast(src,10u32,3u16) however defines die number 0x74a0e101 (decimal
1956700417). This number of bytes, which are extracted from the string is obtained by the argument
10u32: The data type u32 is 32 bits long and consists of 4 bytes. The value 10 of „10u32“ itself is ig-
nored, here. The order of bytes remains unchanged in the stringcast function.

Back to the example: Sim_RawData contains the data of the incoming telegrams in the first 4 bytes.
The order of the bytes on the bus is different to the order of the bytes of the Linuxsystem of the
EibPCs. In order to use these data the byte order has to be reversed i.e. the last bit has to be in the
first place etc. This rearrangement is realised by the help of multiplication by 256 and 65536 and
16777216.

The present processing of raw data is limited to max. 32 bit telegrams. Longer data telegrams can
not be recorded, on the other hand bytes will be surely wasted by recording 1 bit elements, because
all telegrams are treated equally. Nevertheless this approach to some extent an optimal compromise
because the processing is easier later.

The code-part 2 calculates now the data of the u32 – variable Sim_RawData .

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 98 of 247

Determination of telegrams arrival time

The points of transmission time of the telegrams have to be determined relative, because a previ -
ously recorded simulation relative (time-shifted) to the starting point of the simulation have to take
place.

Code-part 3
// Die Uhr wird gestartet (Countdowntimer)

if Sim_Start then {

Position=0u16;

Sim_MyGA=OFF;

if !Sim_Play then {

 stringset(TimeStamp,convert(Interval,0u32),Position);

} endif;

} endif

// Die Uhr wird gestoppt nach dem Intervall

if afterc(Sim_Start,Interval,Timer) then {

Position=0u16;

} endif

When changing from Sim_Start to ON the first if-statement initialises the string timestamp. In addtion
a afterc-timer (a.m.) is started. Interval determines how the duration of the recording is, e.g. 1 day =
86400000ms. This function updates at each loop run as a countdown-timer die variable Timer. This
function relatively counts down from the starting point the elapsed time in ms. In the string Time-
stamp the start is written on position zero but in order to simplify the maximum recording duration is
limited on 32 bit (49 days).

Recording of data

if with code-part 1 is set, that the incoming GA is to be recorded (Sim_MyGA at ON), thus the data in
the string Data and die group address in the string Recoder are saved. As the group addresses are
only 16 bits wide, the bit length can saved in the same array at the same time. For storing the raw
data in one string stringset is used.

stringset(dest{cxxxx}, src, pos{u16})

This function writes into the target string dest on its position of location Pos the (binary) contents of
src.

Code-part 4
if !Sim_Play and Sim_Next then {

stringset(TimeStamp,convert(Timer,0u32),Postion);

//ggf. alten Zeitstempel löschen

 stringset(TimeStamp,convert(Timer,0u32),Postion+4u16);

// GA abspeichern

stringset(Recorder,Sim_GA,Postion);

// Die Länge speichern

stringset(Recorder,Sim_GA,Postion+2u16);

// Den Wert speichern

stringset(Data,Sim_RawData,Postion);

Sim_MyGA=OFF;

Sim_Next=OFF;

Sim_GA=65365u16;

Postion=Postion+4u16;

// Überlauf?

 if Postion>capacity(TimeStamp) then Sim_Start=OFF endif;

} endif

The fact that the timestamp, data- and group addresses are stored 32 bits wide, the position of a
telegram is equal in thess strings, which simplifies the processing. In a c1400 string are recorded up
to 350 telegrams. With the help of 65k strings are recorded up to 16341 telegrams. In the present
case the telegram memory was with c4000 determinated by 1000. The function capacity shows how
many bytes the string can maximum save.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 99 of 247

Encoding of c14

String concatenation with different

length

After the preset time the recoding will restart in code-part 3. The first stored values are overwritten ,
the old values are preserved, which can disturb. Therefore in the above code-part 4 a possibly exist-
ing timestamp out of a previous recording is deleted.

Playing of a recording

The playing of a recording is relatively simple. For this purpose there are only the group address and
the raw data is “loaded” (strings) and these are written to the bus. In this case the timer from code-
part 3 has to be restarted. The present countdown time on Timer is compared with the timestamp in
Timestamp and initialize a letter when falling below of the time:

Code-part 5
if Sim_Play and Timer<convert(stringcast(TimeStamp,1u32,Position),0u64) then {

 SimGA_Out=stringcast(Recorder,0u16,Position);

 SimGA_Len=stringcast(Recorder,0,Position+2u16);

 SimGA_Val=stringcast(Data,0u32,Position);

 if SimGA_Len==1 then write(address(SimGA_Out),convert(SimGA_Val,EIN)) endif;

 if SimGA_Len==2 then write(address(SimGA_Out),convert(SimGA_Val,0)) endif;

 if SimGA_Len==3 then write(address(SimGA_Out),convert(SimGA_Val,0u16)) endif;

 if SimGA_Len==4 then write(address(SimGA_Out),SimGA_Val) endif;

 Position=Position+4u16;

} endif

The data types due to the use of the raw data need not be observed. Only the length of telegrams is
to be evaluated so that they correspond to those of the recording.

The macro-library EnertexPresence.lib is realised in this manner.

In the library the recording will be broken down into smaller day intervals and assembled later when
playing. The recording then starts each to the next day interval.

The KNXTM standard requires that devices with 14-byte messages („c14“ types) have to implement
only the ASCII code, and optionally allows ISO8859-1, which itself only uses 1-byte characters
(see http://de.wikipedia.org/wiki/ISO_8859-1).

EibStudio uses UTF-8 as internal character encoding. When the EibPC program is compiled, c14-
strings are re-encoded in ISO8815-1 automatically.

In string processing is often resorted to the concatenation i.e. the “concateantion” of strings.

Thus e.g. in the code
s1=$Hallo $c1000

s2=$Welt$c1000

s3=s1+s2

the string s3 will have the content Hello World. The data type control in the EibParser ensures that
s3 is of type c1000. The EibParser ensures that the concatenation can record the size of the longest
string , in the present case are for s1+s2 1000 Bytes. s3 are assigned as a result of the concatena-
tion s1+s2 1000 Bytes.

If 950 bytes of data already available in s2 and in s1 in turn is 90 bytes then 40 bytes are in the con-
catenation “lost” because only s3 can max. hold 1000 Bytes.

The following code is to be sonsidered as well:
s1=$Hallo $c1000

s2=$Welt$c1000

s3=$$c2000

if htime(10,00,00) then s3=s1+s2 endif

Again the concatenation is s1+s2 the length of 1000 Bytes, as they are composed out of two 1000
byte-strings. The assignment to the 2000 bytes long s3 ovvurs only after the concatenation. However
as already the concatenation operation has limited the length up to 1000 bytes here bytes can get
“lost”.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

http://de.wikipedia.org/wiki/ISO_8859-1

Examples S. 100 of 247

This is in the following code different:

s1=$Hallo $c1000

s2=$Welt$c1000

s3=$$c200

if htime(10,00,00) then s3=s1+s2 endif

Again the concatenation is s1+s2 the length of 1000 bytes, as they are composed out of two 1000
byte strings. The assignment of the 200 bytes long s3 occurs only as a result of the concatenation:
First the concatenation operation s1+s2 limited the length up to 1000 bytes, allocating limited to s3
its length to 200 bytes, so assuming, where 800 bytes of data „lost”.

If the concatenation s1+s2 in no case lose data, a dummy variable has to be introduced:
s1=$Hallo $c1000

s2=$Welt$c1000

s3=$$c2000

dummy=$$c2000

if htime(10,00,00) then s3=s1+s2+dummy endif

This ensures that s1+s2+dummy 2000 bytes can hold as a result. Therefore the concatenation will
deliver 2000 bytes to s3 as a result.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 101 of 247

FTP Data streams

Four data streams

Configuration of the transfer

Several strings are summarised in a

line of text

With the help of configurable FTP transfers any ASCII ("plaintext") files can be written to an external
FTP server. The maximum file size is 64 kB.

For this purpose, four different handles (= ID number of transfers) are created, which - by itself
buffered queue - create these files on the server. The files are via timeout earlier (and then fewer
bytes if necessary) written or initiated by flushftp () by the user. The file names are assigned auto -
matically by the firmware by date and time.

In the following, the procedure must be described in detail when creating and applying these FTP
outsourcing.

First, the stream and its handle must be defined in the program. For this purpose, the function

ftpconfig(server,user,password,path,timeout)

is needed (P. 195). A handle refers to a unique number (ID) for a transfer and is about tantamount to
a name.

The first three arguments are used to configure the Tranfers: IP address, user name and password,
then follows the target directory on the server and a timeout parameter. Use this statement to re-
serve a 64 Kbyte buffer in Enertex ® EibPC. The transfer of the buffer occurs when either the buffer
was completely filled (more on this below) or the number timeout seconds have elapsed since the
last transfer.

// ServerDaten

server=$ftp.enertex.de$

user=$enertex$

password=$enertex$

path=$KNX/Telegramme$

// Timeout in Sekunden

timeout=900u32

// FTP Queue anlegen

// Wenn Handle ungleich Null, dann ist das fehlerfrei gelungen

Handle=ftpConfig(server,user,password,path,timeout)

During operation, the data must now be written into the buffer. Therefore

sendftp(handle,data1,[data2],[...])

is needed. The function allows arbitrary strings as arguments, because the target file is also just a
text file.Any data in the form of numerical values must be converted using the Convert function. In
this case an LF CR (newline suitable for Windows) is inserted at the end of the data transmission of
sendftp. All call to sendftp can pass more than one substring, but no more than 1400 bytes assume
total. Accordingly, the maximum length is 1400 bytes:

// Daten in die Queue schreiben

Data1=$Daten Nr. $

Data2=$ des internen Zählers - $

Nr=0u16

status=3

// minütlich werden die Daten Data1 in den internen Buffer geschrieben

// nach 15 Minuten (timeout) werden die Daten am FTP-Server ausgelagert

if stime(60) then {

 status=sendftp(Handle, Data1,convert(Nr,$$),Data2,convert(settime(),$$));

 Nr=Nr+1u16;

} endif

If the variable status to 1, writing to the buffer of the transfer was successful. However, this has noth-
ing to do with the fact that the data have arrived on the FTP server.

For this, the status of the FTP data stream must be queried.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 102 of 247

Therefore is

ftpstate(handle)

available.

With

ftpstatus=ftpstate(Handle)

if ftpstatus==5 then write('1/2/3'c14,$FTP Overflow$c14) endif

the following status can be obtained:

● Configures / error-free = 0

● the last transmission was error-free = 1

● the FTP server was not reachable = 2

● the password / user is not allowed = 3

● The target directory does not exist and it could not be created = 4

● The queue has an overflow (= 5), this can only occur if the transmission was not success -
ful before.

● Handle is not defined = 6

If it is for the processing of importance to determine the level of the stream buffer, this can be
learned with the aid of

ftpbuffer(handle)

ftptimeout(handle).

The first function returns the number of unused bytes in the buffer, the second function describes the
elapsed time since the last transfer.

if mtime(0,0) then {

//Füllstand des FTP Buffers

buffer=ftpbuffer(Handle)+1u16

//Bereits verstrichene Zeit seit dem letzten Transfer in Sekunden.

timeout=ftptimeout(Handle)

} endif

In addition to the automatic writing of the data to the FTP server, the buffer can also be manually
emptied (“flushed”) with the use of the function

flushftp(handle)

while you are uploading the data to the FTP server “manually”.
// Daten "manuell" flushen (nur dann wird die Übertragung aktiv)

// täglich um 00:00:00 Uhr

if htime(00,00,00) then {

 status=flushftp(Handle);

} endif

If no manual flushing or writing is done, the EibPC is going to initiate the transfer independently. The
transfer takes place when the buffer is full or the configured timeout elapsed (in seconds) since the
last transfer.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 103 of 247

Use of own Html code and graphics

on the Web server

With the weboutput field of the web server, the user can show his own HTML code on the visu. In the
output field a simple text can be represented, but it is also possible to represent dynamically a com-
plex HTML code.

Incorrect or invalid HTML code in weboutput may interfere with the page layout. Such errors
are not corrected by the free support. Please work here with tools as shown on the link
http://www.quackit.com/html/online-html-editor/ to test the HTML code.

Thereto you have to define the output field in the web server:
[WebServer]

page (2) [$Haus$,$Energie$]

weboutput(Out1)[QUAD,ICON] weboutput(Out2)[QUAD,NOICON]

[EibPC]

Out1=2

Out2=3

You can note that the weboutput field can only be set globally. The element can be displayed with or
without an icon (ICON or NOICON). The width is set to 2 unit width, the height can be set single
(SINGLE), double (DOUBLE) or quadruple (QUAD).

The restriction to global elements arises from the possibility that the Weboutput-box can absorb 65 Kbytes of data.
For 40 global elements, which make 2 MB, you have to keep free space in RAM for these items.

With the function

weboutput(ID,Data)

is the data written of the field. In this case is Data a string with a maximum length of 65534 bytes
(type c65534). A special feature is that this string can be a valid html code. This makes it possible to
dynamic formatting and display.

We are going to describe the both at the outset specified fields so that a website as in 5 is created:

Figure 5: Weboutput

For the creation of the actual HTML code, please refer to http://de.selfhtml.org. The Html code can
be preset using the website as the following:

if systemstart() then {

weboutput(Out1,$<h4>Berechnung der <i>Energieeffizienz</i></h4> <ul style="list-style-type:disc">
Obergeschoß: 10 kWh Untergeschoß: 10.3 kWh Erdschoß: 2.3 kWh

 Summe: 22.6 kWh $c10000)

} endif

You can note, that the code inside the $-Sign can't be wrapped. In the development it's recom-
mended to create and test the HTML code seperately.

With the help of an other dependency as the if systemstart() the text and the formatting can be
changed the whole time even during the term of the program.

The second weboutput field should also have its own graphic. At first a .png, .jpg or .gif file has to be
uploaded at the EibPC using EibStudio (p. 23). The path of the graphic for the weboutput is /up-
load/ + file name. Thereby the graph and some text and the HTML formatting will be initialize with
the following statement:

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

http://www.quackit.com/html/online-html-editor/

Examples S. 104 of 247

Convert the consumption in kWh

and on the webserver as a string –

link (note: the “+” sign)

if systemstart() then {

 weboutput(Out2,$ <table border="1"><tr> <td class="oben"> <img src="/upload/effb.jpg" alt="Bild
fehl"></td> <td class="mittig">Das ist ziemlich wenig!
 Super Sache, wenn wenig Energie im

 Haus verbraucht wird.
Freut sich der Geldbeutel und der

Hausbesitzer!</td></tr></table>$)

} endif

The output can be made depended of current values e.g. meter readings of an KNX device, which is
shown in the following.

An engery meter sends via the GA "Energy-2/3/5“,"Energy-2/3/6“ "Energy-2/3/7“ of type u32 the con-
sumption in Wh. We first define the variables in kWh as a string (c.1400).

ConsumptionOG_kWh=convert(convert("Energy-2/3/5",1f32)/1000f32,$$)

ConsumptionEG_kWh=convert(convert("Energy-2/3/6"1f32)/1000f32,$$)

ConsumptionUG_kWh=convert(convert("Energy-2/3/7",1f32)/1000f32,$$)

Sum_kWh= convert(convert("Energy-2/3/7“+"Energy-2/3/6"+"Energy-2/3/5“,1f32)/1000f32,$$)

At twelve o'clock the values should be displayed daily:

if htime(12,0,0) then {

weboutput(Out1,$<h4>Berechnung der <i>Energieeffizienz</i></h4> <ul style="list-style-type:disc">
Obergeschoß: $+ VerbrauchOG_kWh +$ kWh Untergeschoß: $+VerbrauchUG_kWh+$
kWh Erdschoß: $+VerbrauchEG_kWh+$ kWh _______________________

Summe:$+Summe_kWh+$ kWh $c10000)

} endif

Depending on the actual transmitted values, the display will be on the web server (compare with 6):

Figure 6: Dynamic Output

In the code section the HTML string is made of substrings by the use of concatenation (“+”-Signs). It
is important to ensure, that the concatention produces the matching string length. The function we-
boutput can transfer up to 65564 bytes to weboutput-element. The concatenation consists only of $$
(=c1400) and one c10000 string. The string concatenation reserves for the result the number of
bytes, such as the “longest” string-argument is predented.In this case it makes 10.000 bytes, which
are given through the one c10000 string in the code (shown above).

At this point it should be said, that special signs could be composed of multiple bytes, as already de-
scribed on P. 99. The concatenation could bring theoretically more than 10000 bytes as a result, if
the strings exhaust the full length of their definition. In this case the “overlaying” signs cannot respect
the concatenation function and accordingly the concatenation function is going to cut the signs of the
string before copying into the result. It is up to the User if he respects it. (compare with p. 99).

Back to the example:

The most users don't like the output representation of the exponential floating-point representation.
Therefore the representation of values should be more readable with the function stringformat. This
function changes a number into a string - whereupon leading zeros and the indicated accuracy and
floating-point representation can be parameterized.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 105 of 247

Arguments:

1. Value (her f32)

2. Conversion of F32 in floating-

point represenation: 4

3. Representaion with leading zeros:

4

4. Maximum length: 8

5. Accuracy: 1 point

VerbrauchOG_kWh=stringformat(convert("Energie-2/3/5",1f32)/1000f32,4,4,8,1)
VerbrauchEG_kWh=stringformat(convert("Energie-2/3/6",1f32)/1000f32,4,4,8,1)
VerbrauchUG_kWh=stringformat(convert("Energie-2/3/7" ,1f32)/1000f32, 4,4,8,1)
Summe_kWh=stringformat(convert("Energie-2/3/5"+"Energie-2/3/5"+"Energie-2/3/5",1f32)/1000f32,4,4,8,1)

Figure 7: Output format

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 106 of 247

Visualisation of time series With the EibPC time series can be easily added, pemanently stored and visualised. For this purpose
a diagram element art (p. 221) is available on the webserver.

Figure 8: TimeChart webelement EXTLONG

8 shows a TimeChart with three of a total of four possible graphs and the action buttons. The user
can scroll left and right in the TimeBuffer, as well as zoom. In addition, the time range to be dis-
played can be selected. The action buttons are part of the TimeCharts, so there is no further effort in
the web element programming. The operations are applied to all graphs and displayed by all open vi-
sualizations. If the displayed area of the TimeCharts has been changed, this is indicated by highlight-
ing the Reset button. Changes made to the TimeCharts by the EibPC program will no longer be auto -
matically displayed in this state until the TimeChart has been reset by pressing the button (see 9).

Figure 9: Interactive TimeChart

Now consider the following definition (comp. 219):

timebufferconfig(ChartBufferID, MemTyp, Length, DataTyp)

This function allows up to 256 (ID 0 to 255) various buffers for recording time series. MemTyp indi-
cates whether the memory in the ring (0) or linear (1) is described (more on this below). The length of
the max. recording of time series is specified with Length (0u16 to 65565u16). Per stored value (see
below) time series requires 12 bytes regardless of the stored DataTyp. It is recommendable to adjust
the size of the memory to the real needs: A time series with the max. length occupies 780 kB RAM.

DataTyp displays a representative number of time series e.g. 0f16 for 16-bits numbers or 3% for u08
values. The number itself is not further processed and serves the compiler to win only the type infor -
mation. We use the timebuffer with ID 0 for recording the temperature group address 1/2/3 (type f16)
and the ID 1 for the adjusting size of the heat-controller 1/2/4 (u08).

R1_ID=1

// Timebuffer IDs vergeben:

ChartBuffer1=1

ChartBuffer1=2

// timebufferconfig: Einen Zeitbuffer konfigurieren

 MemTyp=0

Len=35040u16

Datatyp=3.3f16

timebufferconfig(ChartBuffer1, MemTyp, Len, "Temperature-1/2/3")

timebufferconfig(ChartBuffer2, MemTyp, Len, "Controll-1/2/4")

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 107 of 247

The readability of the code is increased, if we specify in the above example as the last argument the to be stored
variable or group address. This is not absolutely necessary e.g. timebufferconfig(ChartBuffer1, MemTyp, Len, 2.2f16)
or timebufferconfig(ChartBuffer2, MemTyp, Len,2) would also configure the timebuffer correctly.

With the configuration of the timebuffer to the webelement mtimechart the memory of the time series
(timebuffer) is submitted for presentation by configuring their ID (=handle, acces of number). In this
case the webelement accesses always out the last valid data in the memory.

Now the time series must be “filled” with data. The function

timebufferadd(ChartBufferID, Daten)

completes this task. The function writes the current value of the variable or group address (data) as
well as the timestamp, which is derived from system time of the EibPC, in the memory of the se -
lected time series. So there a time series exists exactly out of a combination value-timestamp. Val -
ues can be up to 4 bytes long. Timestamps internally nedd 8 bytes.

Figure 10: Building of time series (timebuffer)

As 10 should suggest, it is not necessarily so that the values in the timebuffer in the same interval
have to be included, although this can often be the case when logging of energy data. The webele -
ment mtimechart evaluates correctly the timestamp.

If the argument MemTyp from timebufferconfig was defined as a ring[store] so after reaching the last
value the memory will be filled again from the beginning. i.e. the oldest value is replaces with the lat-
est. Is MemTyp defined as linear[memory] then the recording stops if the memory is full

With a timeseries of linked diagram are automatically updated in the visualization i.e. it can be repre -
sented basically the same time series in different diagrams. For example writing every 15 minutes a
value in the buffer and indicating the most recent 192 values in our diagram, you only need the fol -
lowing code:

// Store values in the time buffer

if mtime(0,0) or mtime(15,0) or mtime(30,0) or mtime(45,0) then {

timebufferadd(ChartBuffer0,"Temperature-1/2/3");

timebufferadd(ChartBuffer1,"Controll-1/2/4");

} endif

With

timebuffersize(ChartBufferID)

the level of buffer can be accessed at any time.

The mtimechart webelement now displays 192 values, which is equivalent to a period of 2 days. Our
buffer has space for 35040 values, which corresponds to ¼ hours values one year recording time.
11 shows the option for the user to represent the past values: It an be given a start- and end date. If
more than the configured number of values in the web element are stored in the same period in the
time series as the diagram adjusts the display so that it hides intermediate values.

Figure 11: Change time range of TimeChart

Example: The user sets a period of four days (e.g. 2013-07-11 bis 2013-09-13). In the here given
configuration in the time buffer (ID 0 und 1) 384 values are stored. The diagram can only display 192
values and shows therefore in presentation each second value, effectively ½ hour values over 4 days
will be displayed. Values fluctuations that are present in ¼ hour intervals, are no longer displayed. Th
time axis is scaled or adjusted to the time specified. If the user configures the date fields in different
time intervals the axis is scaled so that the stored values are displayed from oldest to the newest
date.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 108 of 247

It is important to note: If the user moves or scales a diagram, he disconnect the diagram from
the real-time web server, i.e. further changing of values, which are written in the time series
(time buffer) are no longer visible on the web server until a page refresh (usually F5) of the
browser is running. This does not affect the other elements of the website.

After the time series was taken over some time in the EibPC it has to be ensured that these are not
los even if reloading of program or restarting the values. The functions

timebufferstore(ChartBufferID)

timebufferread(ChartBufferID)

are created for this task (comp. p. 219).

timebufferstore sets the values of the timebuffer with the ChartBufferID permanently into the flash
memory of the EibPC , timebufferread reads a stored buffer back. In addition the values with EibStu-
dio as described on page 23 to an external device to ensure data can be downloaded and uploaded.

Thus we store our buffer every 24 h in the following way:

// Wert im Flash speichern

if chtime(01,00,00) then {

timebufferstore(ChartBuffer0);

timebufferstore(ChartBuffer1);

} endif

The values we save back at startup as follows:

if systemstart() then {

timebufferread(ChartBuffer0);

timebufferread(ChartBuffer1);

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 109 of 247

Selecting the values on the position

in the timebuffer with the function

mtimechartpos() or the time with

mitimechart()

Less „ease of operation“, especially in the application with a touch panel but more space for the rep-
resentation is provides by the time charts without interval selection. In this form the diagram is similar
to mcharts and mpcharts (comp. p. 218 and p. 218), where also the time axis is automatically scaled
and taken out of the time buffer.

Figure 12: Default format

Also here: If the user moves or scales a diagram he disconnects the diagram from the real
time webserver, i.e. further changing of values, which are written in the time series (time buf-
fer) are no longer visible on the web server until a page refresh (usually F5) of the browser is
running. This does not affect the other elements of the website.

The functions

mtimechartpos(TimeChartID,ChartIdx,ChartBuffer,StartPos,EndPos)

mtimechart(TimeChartID,ChartIdx,ChartBuffer,StartZeit,EndZeit)

(p. 221) change the visible data range of the chart.

mtimechartpos requires additionally to the ID and the graph index mtimechart the position of the
value range of the data in the buffer to which the value is fixed. As indicated in 13 “numbers” the
EibPC every space from 0 up to max. configured value n-1. In this case, n is the configured buffer
length. Figure 13 shows a buffer with length 4000, start position 0 and end position 3999. With the
help of mtimechartpos one can fall back to the specified position in the time buffer where position 0 is
always the oldest value in the buffer and position n-1 (in the example, the 3999) is the most recent
value in the buffer.

Figure 13: Structure of the timebuffer with index

mtimechart does not evaluate the index of the graph but the value of the timestamp itself. Here have
to be specified the time statements StartTime,EndTime in the argument as utc-millisecond format. In
order to simplify this for the user, you can fall back to the function

utc(Zeit)

(comp. 121). This converts a string specifying of the form $2013-01-30 14:00:00$ into the utc-mil-
lisecond format.

if systemstart() {

 mtimechart(1,0,ChartBuffer0,utc($2013-01-30-14-00-00$),utc($2013-01-30 14:00:00$))

} enduf

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 110 of 247

Change of the displayed buffer of a

mtimechart

Using the same diagram for different

timebuffer: For this purpose the year

will be chosen with the selection box

at the bottom left. The application

program sets up the connection of

diagram graph to the destinated

timebuffer.

Of interest is the possibility to “separate” the pre-configured linking in the web element from time se -
ries to the graph and to display the graph in another buffer.

Here is another example: As shown in 14 should be taken a selection via a mpshifter-webelement,
which is displayed in the recorded timebuffer.

Figure 14: Change of the presentation during running time

In the webserver the three elements shown are defined in which the pshifter is only used to display
the current time. At the start of the application program the webelement ist linked to the timebuffer
with ID chartbuffer3.

[WebServer]

page(PageID)[Log,$Room5$]

design $black$

mtimechart(TimeChartID)[LONG,2,255,30,17,256,0] ($Room1$,LEFTGRAF, ChartBuffer3)

mpshifter(SelectID)[2011,2012,2013][DATE]$Room1$ pshifter(ClockID)[CLOCK]$Aktuelle Uhrzeit$

We define three time series (time buffer),
MemTyp=1

Len=30640u16

Datatyp=3.3f16

timebufferconfig(ChartBuffer0, MemTyp, Len, "RkWohnzimmerTemp-3/1/28")

timebufferconfig(ChartBuffer1, MemTyp, Len, "RkWohnzimmerTemp-3/1/28")

timebufferconfig(ChartBuffer2, MemTyp, Len, "RkWohnzimmerTemp-3/1/28")

which now record data for every 1 year in ¼ time:

Y2011=date(1,1,11) and !date(1,1,12)

Y2012=date(1,1,12) and !date(1,1,13)

Y2013=date(1,1,13) and !date(1,1,15)

if (mtime(45,00) or mtime(45,00) or mtime(15,00) or mtime(00,00)) and Y2011 then {

timebufferadd(ChartBuffer0,"RkWohnzimmerTemp-3/1/28");

} endif

if (mtime(45,00) or mtime(45,00) or mtime(15,00) or mtime(00,00)) and Y2012 then {

timebufferadd(ChartBuffer1,"RkWohnzimmerTemp-3/1/28");

} endif

if (mtime(45,00) or mtime(45,00) or mtime(15,00) or mtime(00,00)) and Y2013 then {

timebufferadd(ChartBuffer2,"RkWohnzimmerTemp-3/1/28");

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Examples S. 111 of 247

Evaluate selection box

If the user now changes the selection box the corresponding time buffer should be displayed:

if mpbutton(SelectID,1,PageID)==255 then {

mtimechartpos(TimeChartID,0,ChartBuffer0,0u16,30639u16);

pdisplay(SelectID,$Es wird 2011 dargestellt$,DATE,DISPLAY,GREY,PageID,1)

} endif

if mpbutton(SelectID,2,PageID)==255 then {

mtimechartpos(TimeChartID,0,ChartBuffer1,0u16,30639u16);

pdisplay(SelectID,$Es wird 2012 dargestellt$,DATE,DISPLAY,GREY,PageID,2)

} endif

if mpbutton(SelectID,3,PageID)==255 then {

mtimechartpos(TimeChartID,0,ChartBuffer2,0u16,30639u16);

pdisplay(SelectID,$Es wird 2013 dargestellt$,DATE,DISPLAY,GREY,PageID,3)

} endif

It can be seen how the graph with index 0 of the mtimechart is “diverted” to the different time buffer
via ID. We fall back to the function mtimechartpos, which links the year chart buffer each with the
graph 0.

Even a small addition to the clock display: This is now shown in the exact seconds in visualization,
because the real-time web server adjusts every change of the “second hand”.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 112 of 247

Expert Functions

Logical operators

AND

OR

This section is only relevant if you write own expert programs.

For all arguments or functions, the group addresses can also be used directly instead of variables.

To create AND-links, the and instruction is provided. This statement is constructed as follows:

Definition

● A and B [and C ... etc.]

Arguments

● All arguments (A, B, C ...) are of the same data type. But otherwise, the data types are ar-
bitrary.

● Any number of links

Effect

● The variable A is bitwise "ANDed" with the variable B (and the variable C etc.). The result
of the operation and is zero (all bits), if one of the variables is zero (all bits). In the other
case the result is a bitwise "ANDing", i.e. the n-th bit of the result is zero, once one of the
bits of the input is zero. Otherwise, the n-th bit of the result is 1, i.e. each n-th bit of the two
(or more) input variables is 1.

Return value

● Data type of the arguments

Example: AND-Link

LightActuatorOn is the result of the AND operation of variable ButtonOn and variable

LightRelease.

The implementation of the user program is then:
LightActuatorON = ButtonOn and LightRelease

If ButtonOn is 1b01 and LightRelease is 1b01, then LightActuatorOn is 1b01, otherwise it is 0b01.

Example: And-Link with different variables

If the variable ButtonOn is '1' and the variable wind speed is exactly 2.9 m/s, the variable

LightActuatorOn has to be set to '1'.

For the implementation, we need the if statement and the comparison ==. (here, the whole if-query is
to be set in parentheses). The implementation is then:

if ((ButtonOn==1u08) and (WindSpeed==2.9f16)) then LightActuatorOn=1u08 endif

To create OR-links, the or statement is provided. This statement is organized as follows:

Definition

● A or B [or C ... etc.]

Arguments

● All arguments (A, B, C ...) are of the same data type. But otherwise, the data types are ar-
bitrary.

● Any number of links

Effect

● The variable A is bitwise "ORed" with the variable B (and the variable C etc.), which
means: The result of the operation or is zero, if both of the variables are zero. In the other
case the result is a bitwise "ORing", i.e. the n-th bit of the result is one, once one of the bits
of the input is one.

Return value

● Data type of the arguments

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 113 of 247

Exclusive-OR

Example: OR-link

LightActuatorOn is the result of the OR operation of variable ButtonON and variable

LightRelease

The implementation is then:
LightActuatorOn = ButtonOn or LightRelease

If TButtonOn is 1b01 or LightRelease is 1b01 or both are 1b01, then LightActuatorOn is 1b01, other-
wise it is 0b01.

Example: OR-link with different variables

If the variable ButtonOn is '1' or the variable WindSpeed is exactly 2.9 m/s, the variable

LightActuatorOn is set to '1'.

For the implementation, we need the if statement and the comparison ==. Here, the entire if-query is
set in parentheses. Then, the implementation reads:

if ((ButtonOn==1u08) or (WindSpeed==2.9f16)) then LightActuatorOn=1u08 endif

To create exclusive-or-links ("either or"), the xor instruction is provided. This statement is constructed
as follows:

Definition

● A xor B [xor C ... etc.

Arguments

● All arguments (A, B, C ...) are of the same data type. But otherwise, the data types are ar-
bitrary.

● Any number of links

Effect

● The variable A is bitwise "XORed" with the variable B (and the variable C etc.), which
means: the result of the operation xor is zero (bitwise), if both of the variables are zero or
one. In the other case, the n-th bit of the result is one, if only one of the bits of the input is
one.

Return value

● Data type of the arguments

Example: XOR-Link

If either KEY1 (type b01) or KEY 2 (type b01) is pressed, the LightActuatorOn is to go to 1b01.

If both are 0b01 and 1b01, LightActuatorOn is to go to 0b01.

The implementation is then:
LightActuatorOn = KEY1 xor KEY2

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 114 of 247

Comparison operators

Hysteresis

To compare values, the following operators are defined:

Definition

● A > B greater

● A < B less

● A == B equal

● A >= B greater than or equal

● A =< B less than or equal

● A !=B not equal

Arguments

● 2 arguments (A, B) are of the same data type.

● Data types: uXX,sXX,fXX, with XX arbitrary bit lengths defined on page 27.

Effect

● The variable A is compared with the variables B – depending on the operator:

The result of the operation > is 1b01, if the variable A is greater than variable B.

The result of the operation < is 1b01, if the variable A is less than variable B.

The result of the operation == is 1b01, if the variable A has the same value as the variable
B.

The result of the operation >= is 1b01, if the variable A is greater than or equal to the vari-
able B.

The result of the operation =< is 1b01, if the variable A is less than or equal to the variable
B.

The result of the operation != is 1b01, if the variable A does not have the same value as
the variable B.

In all other cases the result is 0b01.

Return value

● Data type b01

Definition

● Function hysteresis(Var,LowerLimit,UpperLimit)

Arguments

● 3 arguments (Var,LowerLimit,UpperLimit) of the same data type.

● Data types: uXX,sXX,fXX, with XX arbitrary bit lengths, defined on page 27.

Effect

● The argument Var is compared with the LowerLimit and UpperLimit of a hysteresis func-
tion.

● If the last comparison led to a result 0b01 and (Var≥UpperLimit) is true, the function as-
sumes the value 1b01.

● If the last comparison led to a result 1b01 and (Var≥LowerLimit) is true, the function as-
sumes the value 0b01.

Return value

● Data type b01

Example: Temperature-controlled shading

If a temperature actuator (Group address 1/3/4, data type f16) reports a temperature warmer

than 25°C, the shading on the group address 4/5/77 should go to ON.

Only if the temperature falls below 23°C again, the shading is to boot again.

Implementation in the user program:
if hysteresis('1/3/4'f16,23f16,25f16) then write('4/5/77'b01,ON) \\

 else write('4/5/77'b01,OFF) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 115 of 247

Inverting

Shift

For inverting binary values (data type b01), the following syntax is available

Definition

● !A

Arguments

● Argument A is of the data type b01

Effect

● The variable A is inverted.

The result of the operation is 1b01, if the variable A is 0b01

The result of the operation is 0b01, if the variable A is 1b01

Return value

● Data type b01

Example: Inverted button

LightActuatorOn (b01) is to behave inversely to KEY1 (b01).

The reaction is then:
LightActuatorOn = !Button1

If KEY1 is 1b01, then LightActuator is 0b01. If KEY1 is 0b01, then LightActuator is 1b01.

The following function is available for shifting numeric data types:

Definition

● shift(Operand, Number)

Arguments

● Argument Operand of any numerical data type

● Argument Number of data type s08

Effect

● Arithmetic shift of the operand by number. With positive number shift to the left, with a neg-
ative number to the right. The number of bits of the number of the input is shortened.

Return value

● as Operand

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 116 of 247

Time

Set system time

Send system time

Definition

● Function gettime(address) with:

Arguments

● 1 Argument of data type t24

Effect

● The system clock of EibPC is overwritten with the time stored in address and thus reset.

Return value

● none

Note:

1. There is no assignment of the form a=gettime(b) possible (error message).

2. The function will only be executed, if the function is in a then or else branch of an if instruc-

tion.

Example: gettime

Weekly on Sunday at 00:00 clock, the system clock is to be synchronized with a radio clock

existing in the KNX bus and to be reset.

Implementation in the user program:
if(cwtime(0,0,0,0)) then read(“RadioClock-1/2/1“) endif

if event (“RadioClock-1/2/1“) then gettime(“RadioClock-1/2/1“) endif

By the read function, a read request to the group address will be generated. The information which is
then sent to the KNX bus is written into the system clock of the EibPC by the gettime function.

Definition

● Function settime()

Arguments

● none

Effect

● The system time is read from the EibPC and assigned to a variable as a value. Return
value is the current time in DPT format.

Data type result(Return)

● Data type t24

Example 1: settime

On the 1st of each month, the group address "WallClock-4/3/5" and the variable time are to be

synchronized with the system clock (and thus be reset).

Implementation in the user program:
if (day(1) and !day2)) then write(„WallClock24,settime()) endif

if (day(1) and !day(2)) then time=settime() endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 117 of 247

Set system date

Send system date

Definition

● Function getdate(Address) with:

Arguments

● 1 Argument of data type d24.

Effect

● The system clock of the EibPC is overwritten with the time stored in address and thus re-
set.

Return value

● none

Note:

1. There is no assignment of the form a=getdate(b) possible (error message).

2. The function will only be executed, if the function is in a then or else branch of an if instruc-

tion.

Example: GetDate

All six months, the system date is to be synchronized with a radio clock existing in the KNX bus and to be
reset.

Implementation in the user program:
if (month(1,1) or month(1,7)) then read(“RadioClock-1/2/2“) endif

if event (“RadioClock-1/2/2“) then getdate(“RadioClock-1/2/2“) endif

Definition

● Function setdate()

Arguments

● none

Effect

● The system date is read from the EibPC. The return value is the time in the format of type
d24

Return value

● Data type d24

Example: SetDate

On the 1st day of each year, the address "Date-3/5/3" is to be synchronized with the date of the EibPC and to
be reset.

Implementation in the user program:
if (month(1,1)) then write(“Date-3/5/3“d24, setdate()) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 118 of 247

Set system time and date

Send system time and date

Current hour

Definition

● Function gettimedate(address) with:

Arguments

● 1 argument of data type y64

Effect

● The system clock and the system date of the EibPC are overwritten with the time and the
date stored in address and thus reset.

Return value

● none

Note:

1. There is no assignment of the form a=gettimedate(b) possible (error message)

2. The function will only be executed, if the function is in a then or else branch of an if instruc-

tion.

Example: GetTimeDate

Every six months, the system time and the system date is to be synchronized with a radio clock existing in the
KNX bus and to be reset.

Implementation in the user program:
if (month(1,1) or month(1,7)) then read(“RadioClock-1/2/3“) endif

if event (“RadioClock-1/2/3“) then gettimedate(“RadioClock-1/2/3“) endif

Definition

● Function settimedate()

Arguments

● none

Effect

● The system time and system date are read from the EibPC and assigned to a variable as a
value

Return value

● Data type y64

Example: SetDate

On the 1st day of each year, the address "RadioClock-1/2/1" is to be synchronized with the system time and
the system date of the EibPC and to be reset.

Implementation in the user program:
if (month(1,1)) then write(“RadioClock-1/2/1“d24, settimedate()) endif

Definition

● Function hour()

Arguments

● none

Effect

● The system time (hour) is stored in a variable

Return value

● Data type u08

Example:

Stop watch see page 119

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 119 of 247

Current minute

Current second

Stringformat for a formatted output/

conversion

Definition

● Function minute()

Arguments

● none

Effect

● The system time (minute) is stored in a variable

Return value

● Data type u08

Example:

Stop watch see page 119

Definition

● Function second()

Arguments

● none

Effect

● The system time (second) is stored in a variable

Return value

● Data type u08

Example:Stop watch

Timing the seconds at which the variable Stopper_Go has the value ON. A c1400 text string

shall be given that prints the time in the format 000d:000h:000m:000s (days, hours, minutes,

seconds).

Here the implementation, at which the seconds can be found in the variable Stopper_time and the
formatted output in Stopper. Cf.example Stop watch V2 on page 165).

[EibPC]

Stopper=$$

Stopper_start=0s32

Stopper_time=1s32

Stopper_Go=AUS

// Start the stop watch (calculate offset)

if (Stopper_Go) then {

Stopper_start=-convert(hour(),0s32)*3600s32-convert(minute(),0s32)*60s32-convert(second(),0s32)

} endif

if change(dayofweek()) then Stopper_start=Stopper_start+86400s32 endif

// End of stop time

if !Stopper_Go then {

Stopper_time=convert(hour(),0s32)*3600s32+convert(minute(),0s32)*60s32+convert(second(),0s32)+Stopper
_start;

Stopper=stringformat(Stopper_start/86400s32,0,3,3,3)+$d:$+\\

 stringformat(mod(Stopper_start,86400s32)/3600s32,0,3,3,3)+$h:$+\\

 stringformat(mod(Stopper_start,3600s32)/60s32,0,3,3,3)+$m:$+\\

 stringformat(mod(Stopper_start,60s32),0,3,3,3)+s

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 120 of 247

Change hour

Change minute

Change second

Definition

● Function changehour(arg)

Arguments

● arg, Data type u08

Effect

● The system time (hour) is set to the value of arg.

● Please note that the timer functions can be disturbed by setting or changing, respectively,
the system time.

● If your EibPC establishes an NTP connection, the time is reset again.

Return value

● none

Definition

● Function changeminute(arg)

Arguments

● arg, Data type u08

Effect

● The system time (minute) is set to the value of arg.

● Please note that the timer functions can be disturbed by setting or changing, respectively,
the system time.

● If your EibPC establishes an NTP connection, the time is reset again.

Return value

● none

Definition

● Function changesecond(arg)

Arguments

● arg, Data type u08

Effect

● The system time (second) is set to the value of arg.

● Please note that the timer functions can be disturbed by setting or changing, respectively,
the system time.

● If your EibPC establishes an NTP connection, the time is reset again.

Return value

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 121 of 247

String in Unixtime (UTC)

Current time Unixtime (UTC)

Unixtime in String (UTC)

Definition

• utc(time)

Arguments

• time (c) with format YYYY-MM-DD HH:MM:SS

Effect

• Time since 00:00:00 UTC on 1 Jan 1970 without leap seconds (Unixtime) until time in mil-
liseconds (UTC).

Return value (u64)

Definition

• utctime()

Arguments

• none

Effect

• Time since 00:00:00 UTC on 1 Jan 1970 without leap seconds (Unixtime) until now in mil-
liseconds (UTC).

Return value (u64)

Definition

• utcconvert(unixtime)

Arguments

• unixtime (u64)

Effect

• Convert unixtime (time since 00:00:00 UTC on 1 Jan 1970 without leap seconds) in mil-
liseconds into a String (UTC).

Return value (c1400)

• Format YYYY-MM-DD HH:MM:SS

Example:

// Current Unixtime (UTC)

unixtime=utctime()

// Convert specific unixtime (Mo 1. Apr 14:22:02 UTC 2013) in YYYY-MM-DD HH:MM:SS

DateTime=utcconvert(1364826122000u64)

// Convert 2012-09-03 20:00:17 in Unixtime (UTC). Result: 1346702417000

utcZ=utc($2012-09-03 20:00:17$)

// Days of February – leap year?

uDaysFeb2020=(utc($2020-03-01 00:00:00$) - utc($2020-02-01 00:00:00$))/(24u64*3600u64*1000u64)

uDaysFeb2019=(utc($2019-03-01 00:00:00$) - utc($2019-02-01 00:00:00$))/(24u64*3600u64*1000u64)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 122 of 247

String in Unix time (local time)

Unix time in String (local time)

Offset between local time and

UTC

Definition

• localtime(time)

Arguments

• time (c) with format YYYY-MM-DD HH:MM:SS

Effect

• Time since 00:00:00 UTC on 1 Jan 1970 without leap seconds (Unixtime) until time in mil-
liseconds (local time).

Return value (u64)

Definition

• localtimeconvert(unixtime)

Arguments

• unixtime (u64)

Effect

• Convert unixtime (time since 00:00:00 UTC on 1 Jan 1970 without leap seconds) in mil-
liseconds into a String (local time).

Return value (c1400)

• Format YYYY-MM-DD HH:MM:SS

Example:

// Yesterday at the same time

now=utctime()

yesterdayLocal=localtimeconvert(now-(24u64*3600000u64))

Definition

• difftime()

Arguments

• none

Effect

• Offset between local time and UTC in milliseconds. Represents offset due to the selected
timezone and eventually daylight saving time with respect to UTC. For central europe with
UTC+1, the function returns +1000s64 (CET) or +2000s64 (CEST).

Return value (s64)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 123 of 247

Date

Date comparison

Monthly comparison

A date comparison is defined as follows:

Definition

● Function date(dd,mm,yyy) with:

dd: Day (1..31)

mm: Month (1=January, 12=December)

yyy: Years Difference (0..255) from year 2000

Arguments

● All of the data type u08

Effect

● The output is 1b01, if the date is reached or already passed. If the date is before the set
value, the output goes to 0

Return value

● Data type b01

Example: Date comparison timer

On 01 October 2009 the variable a is to be set to 1u08.

Implementation in the user program:
if date(10,1,09) then a=1 endif

A monthly comparison is defined as follows:

Definition

● Function month(dd,mm) with:

dd: Day (1..31)

mm: Month (1=January, 12=December)

Arguments

● 2 arguments are of data type u08

Effect

● The output is 1b01, if the date is reached or already passed. If the date is before the set
value, the output goes to 0b01. With the beginning of a new year (January 1) the output
goes to 0b01, until the month and day reach the set value.

Return value

● Data type b01

Example: Monthly comparison timer

Every year on 01 December, the variable ChristmasLightingOn is to be set on 1.

Implementation in the user program:
if month(1,12) then ChristmasLightingOn=1 endif

Example: Definition of variable “summer“

A variable summer shall be defined, which is 1b01 (On) from 1.5. until 30.9. of each year.

Implementation in the user program:
Summer=month(01,05) and !month(30,09)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 124 of 247

Daily comparison

Day of week

Day (relative to) Easter Sunday

A daily comparison is defined as follows:

Definition

● Function day(dd) with:

dd: Day (1..31)

Arguments

● Argument of data type u08

Effect

● The output is 1b01 when the day is reached or already passed. If the day is before the set
value, the output goes to 0b01. With the beginning of a new month, the output goes to
0b01 until the day meets the set value.

Return value

● Data type b01

Example: Day timer comparison

Every 6th in the month, the variable SprinklerOn is to be set to 1.

The implementation in the user program then reads:
if day(6) then SprinklerOn=1 endif

Definition

● Function dayofweek() with:

Arguments

● none

Effect

● The output returns the current day of the week [0{Sunday}..6{Saturday}.

Return value

● Data type u08

Example: Day timer comparison

Request the current day of the week. In case it is Sunday, the variable SprinklerOn is to be set

to 1.

The implementation in the user program then reads:
if dayofweek()==SUNDAY then SprinklerOn=1 endif

Definition

● Function easterday(Offset)

Arguments

● Argument Offset Data type s16

Effect

● Calculate the day of Easter Sunday. An offset for the calculation is indicated, e.g. Easter
Sunday +40 days, Easter Sunday - 30 days.

Return value

● Data type u08

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 125 of 247

Month (relative to) Easter Sunday

Definition

● Function eastermonth(Offset)

Arguments

● Argument Offset Data type s16

Effect

● Calculate the month of Easter Sunday. An offset for the calculation is indicated, e.g. Easter
Sunday +40 days, Easter Sunday - 30 days..

Return value

● Data type u08

Example: Calculation of Ash Wednesday; (Ash Wednesday is 46 days before Easter Sunday:)

uAschermittwochTag=easterday(-46s16)

uAschermittwochMonat=eastermonth(-46s16)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 126 of 247

Shading and the

position of the sun

Day or night

Azimuth

The function sun returns whether it is day or night. It requires the EibPC's knowledge of the longitude
and latitude of the concerned location.

These can be entered in EibStudio.

Definition

● Function sun()

Effect

● Return Value: The return value is 1 binary, if it is day and 0 binary, if it is night.

Return value

● Data type b01

Example 2: Solar altitude

If it is day, the variable SunblindsOn should be set to 0.

The implementation in the user program is then:
if (sun()==1b01) then SunblindsOn=0 endif

if (sun()==BRIGHT) then SunblindsOn=0 endif

“BRIGHT“ is a predefined variable with the binary value 1b01 and hence can be stated as a compari-
son operator instead of 1b01.

Definition

● Function azimuth()

Arguments

● None. However, the EibPC should know the longitude and latitude of the place. These can

be entered in EibStudio (see page 126).

Effect

● This function cyclically (time frame: 5 minutes) calculates the azimuth of the sun in de-
grees, north through east.

(Source: Wikipedia)

Data type (Return)

● Data type f32

Example 3: Calculate azimuth

Calculate the azimuth angle of the sun for the location of the EibPC every 5 minutes.

The implementation in the user program then reads:
AAngle=azimuth()

Note:

This function is needed in house awnings. In the library EnertexBeschattung.lib you will find detailed
examples.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 127 of 247

Elevation

Time relative to sunrise/sunset

Definition

● Function elevation()

Arguments

● None. However, the EibPC should know the longitude and latitude of the concerned loca-

tion. These can be entered in EibStudio (see page 126).

Effect

● This function cyclically (time frame: 5 minutes) calculates the elevation angle of the sun in
degrees.

(Source: Wikipedia)

Return value

● Data type f32

Example 4: elevation

At 5:00, calculate the elevation angle of the sun at the location of the EibPC.

The implementation in the user program then reads:
HAngle=0f32

if htime(5,00) then HAngle=elevation() endif

Note:

This function is needed in house awnings. In the library EnertexBeschattung.lib you will find detailed
examples.

Definition

● Function presun(hh,mm)

hh: hours (0... 23)

mm: minutes (0... 59)

Arguments

● two arguments of data type u08

Effect

● Changes from 0b01 to 1b01 at the specified time before sunrise, and from 1b01 to 0b01 at
the specified time before chancing from day to night.

● The program has to know the geographic coordinates.

Return value (b01)

● Sun position, 1b01= Day, 0b01 = Night

s=$$

if presun(1,30) then s=$Eine Stunde vor Sonnenaufgang$ endif

if !presun(0,20) then s=$20 Minuten vor Sonnenuntergang$ endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 128 of 247

Hour of sunrise

Minute of sunrise

Hour of sunset

Hour of sunset

Definition

● Function sunrisehour()

Arguments

● none

Effect

● The hour (0 to 23) at sunrise is returned.

Return value

● Data type u08

Definition

● Function sunriseminute()

Arguments

● none

Effect

● The minute (0 to 59) at sunrise is returned.

Return value

● Data type u08

Example: Visualize the sunrise

Write the time at sunrise to the group address 1/4/4 (data type c14).

The implementation in the user program then reads:
if htime(sunrisehour(),sunriseminute(),0) then \\

 write('1/4/4'c14, convert(sunrisehour(),$$c14)+$:$c14+convert(sunriseminute(),$$c14)) \\

endif

Definition

● Function sunsethour()

Arguments

● none

Effect

● The hour (0 to 23) at sunset is returned.

Return value

● Data type u08

Definition

● Function sunsetminute()

Arguments

● none

Effect

● The minute (0 to 59) at sunset is returned.

Return value

● Data type u08

Example: see the above example “visualize the sunrise”

if htime(sunsethour(),sunsetminute(),0) then \\

 write('1/4/4'c14, convert(sunsethour(),$$c14)+$:$c14+convert(sunsetminute(),$$c14)) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 129 of 247

Timer

Weekly timer

Daily timer

Time switches are functions which change their return value from OFF to ON and then back to OFF
upon entering the specified time of day for one processing cycle of the EibPC. Time switches are ob-
jects which trigger regular activities, for example every night at 1:00 clock the garage lighting turns
off etc.

To facilitate the application, we distinguish four types of time switches:

● The weekly time switch which triggers one action per week,

● the daily time switch which runs one action every day,

● the hourly time switch which is active once hourly, and finally

● the minute time switch which triggers one action per minute.

To perform the action, the time switches have to reach exactly the specified time. This should be
considered when programming. As the reference time for all time switches, the system time of the
EibPC is used, which is given the EibPC either by the Internet or via a KNX system device.

Definition

● wtime(hh,mm,ss,dd) with:

hh: Hour (0..23)

mm: Minutes (0..59)

ss: Seconds (0..59)

dd: Day (0=Sunday, 6=Saturday,7=Weekdays, 8=Weekends)

Arguments

● 4 arguments are of data type u08

Effect

● The return value is 0b01, if the current time and date of the EibPC's system clock are not
equal to hh:mm:ss and dd. When the time is reached (and matches exactly), the output
value rises to 1b01 (if the time is exceeded, it returns to 0b01).

Return value

● Data type b01

Example: Weekly time switch

Every Tuesday at 01:00 Clock, 30 seconds, the variable LightActuatorOn is set to 0b01.

Implementation in the user program:
if wtime(TUESDAY,01,00,30) then LightActuatorOn=0b01 endif

Note:

For the days weekend and weekday constants (written in capitals) are defined (MONDAY, TUES-
DAY, WEEKDAYS, WEEKENDS, etc.)

Definition

● htime(hh,mm,ss) with:

hh: Hour (0..23)

mm: Minutes (0..59)

ss: Seconds (0..59)

Arguments

● 3 Arguments are of data type u08

Effect

● The return value is 0b01, if the current time of EibPC-system clock is not equal to
hh:mm:ss. When the time is reached (and matches exactly), the output value rises to 1b01
(if the date is exceeded, it returns to 0b01).

Return value

● Data type b01

Example: Daily timer

Every day, 22:04 Clock, 7 seconds, the variable LightActuatorOn is to set '0'.

Implementation in the user program:
if htime(22,04,07) then LightActuatorOn=0b01 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 130 of 247

Hourly timer

Minute timer

The hourly timer is defined as follows:

Definition

● mtime(mm,ss) with:

mm: Minutes (0..59)

ss: Seconds (0..59)

Arguments

● 2 arguments are of data type u08

Effect

● The return value is 0b01, if the current minute-second-time of the EibPC's system clock is
not equal to mm:ss (the hour is not relevant). When the time is reached (and matches ex-
actly), the output value is set to 1b01 (if the date is exceeded, it returns to 0b01).

Return value

● Data type b01

Example: Example hour time switch

Every hour, always 22 minutes, 7 seconds after a full hour, the variable LightActuatorOn will

be set to '0'.

Implementation in the user program:
if mtime(22,07) then LightActuatorOn=0b01 endif

The minute timer is defined as follows:

Definition

● stime(ss) with:

ss: Seconds (0..59)

Arguments

● 1 argument is of data type u08

Effect

● The return value is 0b01, when the current second-time of the EibPC's system clock is not
equal to ss (hour and minute are not relevant). When the time is reached (and matches ex-
actly), the output value is set to 1b01 (if the date is exceeded, it returns to 0b01).

Return value

● Data type b01

Example: Example minute time switch

Always after 34 seconds after a full minute, the variable WindowContacts should be set to '0'.

Always after 5 seconds after a full minute, the variable should be set to '1'.

Implementation in the user program:
if stime(34) then WindowContacts=0 endif

if stime(5) then WindowContacts=1 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 131 of 247

Comparator time switches

Weekly comparator timer

Comparator time switches are objects that allow a time comparison. Depending on the result of the
comparison, a bus telegram can then be initiated, for example, every night from 1:00 to 6:00 the
garage lights are turned off. If the set time is reached, they are 1b01 until the next day, in contrast to
the time switches, which jump only at the exact time to 1b01 and immediately after back to 0b01.
Thus, comparison time switches are very similar to the more common timers, but have the advan-
tage, that the time must be not be reached accurately (e. g. power failure, reboot).

As the reference time for all comparator time switches, the system time of the EibPC is used, which
is given the EibPC either by the Internet or via a KNX system device.

To facilitate the application, we distinguish four types of comparator time switches:

● The weekly comparator time switch which triggers one action per week,

● the daily comparator time switch which runs one action every day,

● the hourly comparator time switch which is active once hourly, and finally

● the minute comparator time switch which triggers one action per minute.

A weekly comparator time switch is defined as follows:

Definition

● cwtime(hh,mm,ss,dd) with:

ss: Seconds (0..59)

mm: Minutes (0..59)

hh: Hours (0..23)

dd: Day (0 = Sunday, 6 = Saturday, 7=Weekdays, 8=Weekends)

Arguments

● 4 arguments are of data type u08

Effect

● The return value is 0b01, if the current time and day of EibPC's system clock are not equal

to hh:mm:ss and dd. When the time is reached, the output value rises to 1b01 and remains

at this value until the following Sunday, 00:00:00.

Return value

● Data type b01

Example: Week comparator time switch

Every week from Tuesday at 01:00 Clock, 30 seconds, the variable LightActuatorOn is to be

set to '0'. With the beginning of a new week, the variable should be set back to '1'.

Implementation in the user program:
if cwtime(01,00,30,THUSDAY) then LightActuatorOn=0 else LightActuatorOn=1 endif

Note:

1. For the days weekdays and weekend, constants are defined (written in capitals), e. g.
 if cwtime(01,00,30,WEEKEND) then LightActuatorOn=0 else LightActuatorOn=1 endif

2. cwtime and WEEKDAYS returns a constant values of 1b01.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 132 of 247

Daily comparator timer

Hourly comparator timer

A daily comparator time switch is defined as follows:

Definition

● chtime(hh,mm,ss) with:

ss: Seconds (0..59)

mm: Minutes (0..59)

hh: Hour (0..23)

Arguments

● 3 arguments are of the data type u08

Effect

● The return value is 0b01, when the current time of the EibPC's system clock is not equal to

hh:mm:ss. When the time is reached, the output value is set back to 1b01 and remains at

this value until the next day (i.e. 00:00:00).

Return value

● Data type b01

Example: Daily comparator time switch

Every day from 22:04 Clock, 7 seconds, the variable LightActuatorOn is set to '0'. With the

beginning of a new day, the variable is set back to '1'.

Implementation in the user program:
if chtime(22,04,07) then LightActuatorOn=0 else LightActuatorOn=1 endif

A hourly comparator time switch is defined as follows:

Definition

● cmtime(mm,ss) with:

ss: Seconds (0..59)

mm: Minutes (0..59)

Arguments

● 2 arguments are of the data type u08

Effect

● The return value is 0b01, if the current minute-second-time of the EibPC's system clock is

not equal to mm:ss. When the time is reached, the output value is set to 1b01 and remains

at this value until the next hour.

Return value

● Data type b01

Example: Hour comparator time switch

Every hour, always after 22 minutes, 7 seconds, the variable LightActuatorOn is set to '0'. On

the hour, the variable should be set back to '1'.

Implementation in the user program:
if cmtime(22,07) then LightActuatorOn=0 else LightActuatorOn=1 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 133 of 247

Minute comparator timer A minute comparator time switch is defined as follows:

Definition

● cstime(ss) with:

ss: Seconds (0..59)

Arguments

● 1 argument of the data type u08

Effect

● The return value is 0b01, when the current second-time of the EibPC's system clock is not

equal to ss. When the time is reached, the output value is set on 1b01 and remains at this

value until the next minute.

Return value

● Data type b01

Example: Minutes comparator time switch

Always after 34 seconds after a full minute, the variable WindowContacts is to be set to '0'. At

the beginning of a new minute until it reaches the preset time, the variable should be set to '1'.

Implementation in the user program:
if cstime(34) then WindowContacts=0 else WindowContacts=1 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 134 of 247

Delays

Delay

With the help of delay and after, very short time constants can be generated, as needed for example
in the control of motion detectors (light duration, debounce against restart) or certain control algo-
rithms. The EibPC responds even in the microsecond range.

The minimum delay time is 1 ms, the maximum adjustable delay time is approximately 30 years.

Definition

● Function delay(Signal, Time)

Arguments

● Argument Signal of the data type b01

● Argument Time of the data type u64

Effect

● The function starts a timer at the transition of the variable signal from OFF to ON and sets
the return value of the function for one cycle to ON, if the time delay is reached.

t

t

Signal

Delay

Time in ms Time in
ms

Time in ms

Restart Timer

● When a new OFF-ON pulse occurs during the internal timer is running, the timer restarts.

Return value

● Data type b01

Note:

● Do not use delay in the then or else branch of an if statement.

● If the delay (using an if statement and a write) writes a telegram, there can arise an addi-
tional delay time of a few ms - depending on the bus load and the bus speed.

Example: Delayed variable assignment

If the variable LightActuator (Date type f16) is less than 1000f16, the variable light (data type

b01) is to go to ON after 10s for 1 cycle

Implementation in the user program:
Light=!delay(LightActuator<1000f16,10000u64)

Example: Delayed variable assignment

If LightButton (Type b01) is ON, the variable LightActuator (Type b01) is to go to ON after

1300 ms.

Implementation in the user program:
if delay(LightButton,1300u64) then LightActuator=1b01 endif

Alternative 1
if delay(LightButton==1b01,1300u64) then LightActuator=1b01 endif

Alternative 2
if (delay(LightButton,1300u64)==1b01) then=1b01 endif

Note that "LightActuator" is only set, but not deleted. See also the following example.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 135 of 247

Delayc

Example: Switch off delay

If the LightButton (data type b01) is OFF, the variable LightActuator is to go to OFF after 4000

ms.

Then, the implementation in the user program reads:
if (delay(LightButton==OFF,4000u64)) then LightActuator=0b01 endif

Example: Different On- and Off-delay

If LightButton (data type b01) is ON, the variable LightActuator (data b01) is to go to ON after

1300 ms. If LightButton (data type b01) is OFF, the variable LightActuator (data b01) is to go

to OFF after 4000 ms.

Implementation in the user program:
if (delay(LightButton==ON,1300u64)) then LightActuator=ON endif

if (after(LightButton==OFF,4000u64)) then LightActuator=OFF endif

Definition

● Function delayc(Signal, Time, xT)

Arguments

● Argument Signal of the data type b01

● Argument Time of the data type u64

● Argument xT of the data type u64

Effect

● Works as delay (p. 134).

● The remaining time of the internal timer can be read with variable xT.

CAUTION: If you use the same variable xT for different delayc in the programm code, a

non predictable behavoir will be the consequence.

Return value

● Data type b01

Note:

● Do not use delayc in the then or else branch of an if statement.

● If the delayc (using an if statement and a write) writes a telegram, there can arise an addi-
tional delay time of a few ms - depending on the bus load and the bus speed.

Example: Delayed variable assignment

If LightButton (Type b01) is ON, the variable LightActuator (Type b01) is to go to ON after

1300 ms. The remaining time starting from the change to ON til end of the 1300ms period will

be written to address '2/2/2' every 300 ms.

Implementation in the user program:
xT=0u64

debug='2/2/2'u64

if delayc(LightButton,1300u64,xT) then LightActuator=1b01 endif

if (change(xT/300u64)) then write('2/2/2'u64, xT) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 136 of 247

After Definition

● Function after(Signal,Time)

Arguments

● Argument Signal is of data type b01

● Argument Time is of data type u64

Effect

● The function starts a timer at the transition of the variable signal from OFF to ON and sets
the return value of the function for one after to ON, if the time delay is reached.

time in ms

t

t

Dead time

Switch

Return

OFF/ONON ON OFFOFF

● During the dead time interval the function is blocked, i.e. new incoming pulses are ignored.

Return value

● Data type b01

Note:

● If the after (using an if statement and a write) writes a telegram, there can arise an addi-
tional delay time of a few ms - depending on the bus load and the bus speed.

Example: On- and Off-delay

The variable light sensors (data type b01) is to follow the variable LightButton (data type b01)

after 1000 ms.

Implementation in the user program:
LightActuator = after(LightButton,1000u64)

Example: On-delay

If LightButton (data type b01) is ON, the variable LightActuator (data type b01) is to be set to

ON after 1300 ms.

Implementation in the user program:
if (after(LightButton,1300u64)==1b01) then LightActuator=1b01 endif

Alternative 1
if after(LightButton==1b01,1300u64) then LightActuator=1b01 endif

Alternative 2
if after(LightButton,1300u64) then LightActuator=1b01 endif

Note that "LightActuator" is only set to 1b01 (ON), but not re-set to 0b01 (OFF). See also the follow-
ing example.

Example: Off-delay

If the LightButton is (data type b01) is OFF, the variable LightActuator is to be set after 4000

ms.

Then, the implementation in the user program is :
if (after(LightButton==OFF,4000u64)) then LightActuator=0b01 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 137 of 247

Afterc

Example: Different On- and Off-delay

If LightButton (data type b01) is ON, the variable LightActuator (data type b01) is set to ON

after 1300 ms, if LightActuator (data type b01) is OFF, the variable LightActuator (data type

b01) is set to OFF after 4000 ms.

Implementation in the user program:
if (after(LightButton==ON,1300u64)) then LightActuator=ON endif

if (after(LightButton==OFF,4000u64)) then LightActuator=OFF endif

Definition

● Function afterc(Signal,Time,xT)

Arguments

● Argument Signal is of data type b01

● Argument Time is of data type u64

● Argument xT of the data type u64

Effect

● Works exactly as after (p. 135).

● The remaining time of the internal timer can be read with variable xT.

CAUTION: If you use the same variable xT for different delayc in the programm code, a

non predictable behavoir will be the consequence.

Return value

● Data type b01

Note:

● If the afterc (using an if statement and a write) writes a telegram, there can arise an addi-
tional delay time of a few ms - depending on the bus load and the bus speed.

Example: On-delay

If LightButton (data type b01) is ON, the variable LightActuator (data type b01) is to be set to

ON after 1300 ms. The remaining time starting from the change to ON til end of the 1300ms

period will be written to address '2/2/2' every 300 ms.

Implementation in the user program:
xT=0u64

if (afterc(LightButton,1300u64)==1b01,xT) then LightActuator=1b01 endif

if (change(xT/300u64)) then write('2/2/2'u64, xT) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 138 of 247

Cycle timer - cycle Definition

● Function cycle(mm,ss) with:

mm: minutes (0...255)

ss: seconds (0..59)

Arguments

● 2 arguments mm,ss of the data type u08

Effect

mm:ss

t
Return

● The return value is periodically set to 1b01 for one processing cycle, otherwise it is 0b01.
The repetition time is defined in mm:ss (minutes:seconds).

Return value

● Data type b01

Example: Cycle

Always after 1 minutes and 5 seconds a, read request is to be sent to the address "Light1-

0/0/1".

Implementation in the user program:
if cycle(01,05) then read("Light1-0/0/1") endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 139 of 247

Remanent memory

Read from index

Write at index

You can use the Flash-Memory of the EibPC to store variables. Therefore 1000 memory cells are
provided, which can store variables of each data type. This memory is touched neither by firmware
updates nor by hardware resets nor by transferring patches and nor by changing the application pro -
gram.

Storing data of a variable in a flash memory cell stores only binary data and not the type of the vari -
able. So, when data is red from the flash memory cell and wrote back into a variable you must pay
attention to keep the data type of the variable, which was stored previous in the flash memory cell,
equal to that, in which the value is wrote back. Every flash memory cell contains 1400 Bytes. The
number of variables, which can be stored in the Flash-Memory, depends on the data type or their bit
length, respectively, of the stored variables (see page 27).

Definition

● Function readflash(Variable, Flash memory cell)

Arguments

● Variable arbitrary data type

● Flash memory cell of data type u16. Valid values are from 0u16 to 999u16

Effect

● The data of the flash memory cell (Number 0u16 to 999u16) is red and wrote to the vari-
able Variable until the memory cell of the variable Variable is full (see bit length on page
27). The return value is 0b01, when the read process was successful. If the read process
failed, the function returns 1b01.

Return value

● Data type b01

Definition

● Function writeflash(Variable, Flash memory cell)

Arguments

● Variable arbitrary data type

● Flash memory cell of data type u16. Valid values are from 0u16 to 999u16

Effect

● The binary data of the variable Variable is stored in the flash memory cell at the position
(Number 0u16 to 999u16). The return value is 0b01, when the write process was success-
ful. If the write process failed, the function returns 1b01.

Return value

● Data type b01

Example:

At system start ten 1400 byte strings (c1400) should be wrote on the first ten flash memory

cells and afterwards they should be read again. If problems occur during writing or reading,

then an error message should be displayed at the group address '8/5/2'c14.The result of the

read process should be also wrote at the group address.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 140 of 247

Read variable

[EibPC]

a=$: No$

nr=0u16

read_nok=OFF

write_nok=OFF

new_r=ON

new_w=ON

TestGA='8/5/2'c14

if cycle(0,1) and nr<10u16 then write_nok=writeflash(convert(nr,$$)+a,nr); nr=nr+1u16;new_w=!new_w endif

if cycle(0,1) and nr>9u16 then {

read_nok=readflash(a,nr-10u16);

nr=nr+1u16;

if (nr<20u16) then new_r=!new_r endif

} endif

if write_nok then write('8/5/2'c14,$W-Err: $c14+convert(nr,$$c14)) endif

if change(new_w) then write('8/5/2'c14,convert(convert(nr,$$)+a,$$c14)) endif

if read_nok then write('8/5/2'c14,$R-Err: $c14+convert(nr-10u16,$$c14)) endif

if change(new_r) then write('8/5/2'c14,convert(a,$$c14)) endif

Example 2:

The last value that is sent on the bus should be stored in flash and after a restart automatically

sent to the bus.

Value=0u08

if change("Wohnküche RTR Modus-5/1/7") then {

writeflash("Wohnküche RTR Modus-5/1/7",0u16)

} endif

if systemstart() then readflash(Value, 0u16) endif

if after(systemstart(),1000u64) then write("Wohnküche RTR Modus-5/1/7",Value) endif

Definition

● Function readflashvar(Variable)

Arguments

● Variable arbitrary data type

Effect

● In the built-in flash, the binary data is written back to the memory of the Variable, as it can
be recorded (see bit length, page 27)). The return value is 0b01 when reading was suc-
cessful, otherwise 1b01 is returned.

● The reading or de-referencing is performed via the variable name.

Return value

● Data type b01

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 141 of 247

Write variable

Definition

● Function writeflashvar(Variable)

Arguments

● Variable arbitrary data type

Effect

● The binary data of the memory content (see bit length, page 27) of the Variable are stored
in the built-in flash. The return value is 0b01 if the writing was successful, otherwise 1b01
is returned.

● The writing or referencing is carried out exclusively via the variable name.

Return value

● Data type b01

Example:

The last value of a variable is to be stored in the flash at midnight or before a new user

programming is installed and automatically loaded into the variable after a restart.

Note: The predefined variable SHUTDOWN is automatically set to ON by the EibStudio before

importing a new user program, so that the application is given sufficient time, e.g. to store

values to the flash (see p. 154)

ValuePowerK1="K1-Wirkenergiezähler (Verbrauch)-14/2/76"

if htime(0,0,0) or SHUTDOWN then {

writeflashvar(ValuePowerK1)

} endif

if systemstart() then readflashvar(ValuePowerK1) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 142 of 247

Arithmetic operations

Absolute value

Addition

Arc cosine

Not only (logical and temporal) processes can be programmed by EibPC, but also mathematical ex-
pressions can be evaluated and hence appropriate responses to the KNX network, e.g. caused by
sending of the corresponding addresses, can be produced.

For all the arguments of functions, group address can also be directly used instead of vari-
ables.

Definition

● Function abs(variable)

Arguments

● Data type: uXX, sXX and fXX, with XX arbitrary bit length

Effect

● Return value: Absolute of variable

Return value

● Data type of arguments

Example absolute value:

Calculate the absolute value of a (= 2.5f23) and save it as b.

Then, the implementation in the user program is:
a=-2.5f32

b=abs(a)

Definition

● variable1 + variable2 [...]

Arguments

● All arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length defined on page 27

Effect

● The values of the variables are added. Only values of the same type can be added. If you
nevertheless want to add e.g. an unsigned 8 bit value and a signed 16 bit value, use the
convert function (see page 150)

Return value

● Data type of the arguments

Note:

With the same syntax, you can concatenate character strings (see page 161).

Definition

● Function acos(variable)

Arguments

● 1 argument variable is of data type f32

Effect

● Calculation of the arc cosine of the variable given in RAD

● If the argument is greater than 1f32 or smaller than -1.0f32, there is no calculation

Return value

● Data type f32

Example arccosine:

In variable b is the result of the arccosine of variable a.

Then, the implementation in the user program is:
a=5f32

b=acos(a)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 143 of 247

Arc sine

Arc tangent

Cosine

Definition

● Function asin(variable)

Arguments

● 1 argument variable is of data type f32

Effect

● Calculation of the arc sine of the variable given in RAD

● If the argument is greater than 1f32 or smaller than -1.0f32, there is no calculation

Return value

● Data type f32

Example Arcsine:

In variable b is the result of the arcsine of variable a.

Implementation in the user program:
a=5f32

b=asin(a)

Definition

● Function atan(variable1)

Arguments

● 1 argument variable is of data type f32

Effect

● Calculation of the arc tangent of the variable given in RAD

Return value

● Data type f32

Example Arctangent:

In variable b is the result of the arctangent of variable a.

Implementation in the user program:
a=5f32

b=atan(a)

Definition

● Function cos(variable1)

Arguments

● 1 argument variable is of data type f32

Effect

● Calculation of the cosine of the variable given in RAD

Return value

● Data type f32

Example Cosine:

In variable b is the result of the cosine of variable a.

Implementation in the user program:
a=5f32

b=cos(a)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 144 of 247

Ceil

Division

Average

Definition

● Function ceil(variable)

Arguments

● variable is of data type f16, f32

Effect

● Smallest integer ≥ variable

Return value

● Data type f32

Definition

● variable1 / variable2 [...]

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length defined on page 27

Effect

● Calculation of the quotient of Variable1 and Variable2

Return value

● Data type of arguments

Example

The flow of the flow temperature should be adjusted independently of the outdoor temperature.

In case the outdoor temperature is below 0°C, the flow temperature reaches 55°C. At an

outdoor temperature of 30°C, the flow temperature is adjusted to 30°C.

OutdoorTemperature = 15°C

FlowTemperature = 30 + 25/30 * (30 - OutdoorTemperature)

Implementation in the user program:
FlowTemperature = 30f16 + 25f16 / 30f16 * (30f16 – "OutdoorTemperature-3/5/0"f16)

Definition

● Function average(variable1, variable2, [...])

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length

Effect

● Return value: The average value of the given variables which must all be of the same data
type (instead of variables, manual or ets-imported group addresses can be used). The pre-
cision of the calculation depends on the data type.

Return value

● Data type of arguments

Example: Calculate the average value

The average value of the heating actuators shall be determined.

Implementation in the user program:
c=average("HeatingBasement1-1/0/2","HeatingBasement2-1/0/3","HeatingBasement3-1/0/4" /

"HeatingBasement4-1/0/5","HeatingBasement5-1/0/6")

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 145 of 247

Exponential function

Floor

Logarithm

Maximum value

Definition

● Function exp(variable)

Arguments

● 1 argument variable of data type f32

Effect

● Calculation of the exponential function of variable

Return value

● Data type f32

Example exponential function:

Variable b is the result of the exponential function of variable a.

Implementation in the user program:
a=5f32

b=exp(a)

Definition

● Function floor(variable)

Argumente

● Variable of data type f16, f32

Effect

● Biggest integer ≤ variable

Return value

● Data type f32

Definition

● Function log(variable1, variable2)

Arguments

● 2 arguments of data type f32

● variable1: base

● variable2: argument

Effect

● Return value: The result of the logarithm calculation

● If the argument and/or the base is not positive, no calculation is performed.

Return value

● data type f32

The maximum value function is defined as follows:

Definition

● Function max(variable1, variable2, [...])

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length

Effect

● Return value: The maximum value of the given variables which must all be of the same
data type

Return value

● Data type of arguments

Example: Maximum value of 5 percentage values

The maximum value of the heating actuators shall be determined.

Implementation in the user program:
c=max("HeatingBasement1-1/0/2","HeatingBasement2-1/0/3","HeatingBasement3-1/0/4" /

"HeatingBasement4-1/0/5","HeatingBasement5-1/0/6")

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 146 of 247

Minimum value

Mod

Multiplication

Power

The minimum value of an arbitrary number of variables is calculated as follows:

Definition

● Function min(variable1, variable2, [...])

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length defined on page 27

Effect

● Return value: The minimum value of the given variables which must all be of the same
data type

Return value

● Data type of arguments

Example: Minimum value of 5 percentage values

The minimum value of the heating actuators shall be determined.

Implementation in the user program:
c=min("HeatingBasement1-1/0/2","HeatingBasement2-1/0/3","HeatingBasement3-1/0/4" /

"HeatingBasement4-1/0/5","HeatingBasement5-1/0/6")

Definition

● Function mod(variable1, variable2)

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX with XX arbitrary bit length

Effect

● variable1 modulo variable2

Return value

● Data type of arguments

Definition

● variable1 * variable2 [...]

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length

Effect

● The values of the variables are multiplied.

Return value

● Data type of arguments

Definition

● Function pow(variable1, variable2)

Arguments

● 2 arguments of data type f32

● variable1: Base

● variable2: Exponent

Effect

● Return value: The result of the power calculation.

● If the base is negative, no calculation is performed.

Return value

● Data type f32

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 147 of 247

Square root

Sine

Subtraction

Definition

● Function sqrt(variable)

Arguments

● 1 argument of data type f32

Effect

● Square root of variable. variable must be of data type f32.

● If variable is negative, no calculation is performed.

Return value

● Data type f32

Example Square root:

Variable b is the result of the square root of variable a.

Implementation in the user program:
a=5f32

b=sqrt(a)

Definition

● Function sin(variable)

Arguments

● 1 argument of data type f32

Effect

● Return value: Sine of variable in radian.

Return value

● Data type f32

Example Sinus:

Variable b is the sine of variable a.

Implementation in the user program:
a=4f32

b=sin(a)

Definition

● variable1 - variable2 [...]

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length

Effect

● variable1 is subtracted from variable2

Return value

● Data type of arguments

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 148 of 247

Tangent Definition

● Function tan(variable)

Arguments

● 1 argument of data type f32

Effect

● Tangent of variable

Return value

● Data type f32

Example tangent:

Variable b is the tangent of variable a.

Implementation in the user program:
a=5f32

b=tan(a)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 149 of 247

Special functions

Change

Comobject - communication object

This function reacts to changes of the supervised address or variable written to the bus.

Definition

● Function change(variable)

Arguments

● 1 argument of arbitrary data type

Effect

● Return value: ON, if a change of the supervised address or variable is detected. Reset to
OFF after one processing pass of the EibPC.

Return value

● Data type b01

As a peculiarity, the change function must not depend on if statements with else branch.
Similarly to the event function (see page 176), the change function assumes the value ON only for one processing
pass and then executes the then branch of the if function. At the next pass, change returns to OFF, an the else
branch would be executed. To make programming easier for the user, the usage of the change function is restricted
by the compiler.

The change-Function is activated in next processing cycle of the change of its argument.

Example: Change

If the maximum heating output changes, the flow temperature shall be readjusted.

Implementation in the user program:
if change(HeatingMax) then write("FlowTemperature-0/0/1",HeatingNeed) endif

Definition

● Function comobject(variable1, variable2, [...])

Arguments

● all arguments are of the same data type

● Data type: uXX, sXX and fXX, with XX arbitrary bit length

Effect

● Return value: The value of the variable which has changed most recently.

Return value

● Data type of arguments

Example: An actuator with multiple variables – determine the status

You want to determine the status of an actuator (1 bit). The actuator is accessed through the

group addresses "GA_a-1/2/3","GA_b-1/2/4" and "GA_c-1/2/5".

If the actuator has been switched on for 3 minutes and has not yet been switched off manually,

it shall be switched off.

Implementation in the user program:
StatusActuator=comobject("GA_a-1/2/3","GA_b-1/2/4","GA_c-1/2/5")

if delay(StatusActuator==EIN,180000u64) and StatusActuator==EIN then write("GA_a-1/2/3", AUS) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 150 of 247

Convert

Serial number

Message log

Definition

● Function convert(variable1, variable2)

Arguments

● 2 arguments of arbitrary data type

Effect

● Converts the data type of variable1 to the data type of variable2.

● Any type, except for b01.

● If data type f16 is converted to data type c14 or c1400, the resulting string is a floating
point notation with two decimal places.

● If data type f32 is converted to data type c14 or c1400, the resulting string is an exponen-
tial notation with two decimal places.

● If a string is converted into a numerical type, the value is parsed. If the string starts with 0x
or 0X, the number is converted from hexadecimal.

● The value of variable2 will always be ignored. This argument's sole purpose is the specifi-
cation of the target data type.

Return value

● The result of the conversion from variable1 to the data type of variable2.

Note:

Information may be lost by the conversion of data types, e.g. by the truncation of bits.

Example: Convert function

An unsigned 8-bit value shall be added to a signed 16-bit value.

Implementation in the user program:
Var1=10u08

Var2=300s16

Var3=convert(Var1,Var2)+Var2

Definition

● Function devicenr()

Arguments

● none

Effect

● Serial number inquery of EibPC

Return value

● data type u32

Example: devicenr

The serial number should be assigned to the variable SNR.

Implementation in the user program:
SNR=devicenr()

Definition

● Function elog()

Arguments

● none

Effect

● Reading the oldest event stored item.

● After reading the log the entry is deleted.

Return value

● data type c1400 string

Example: see example elognum p.151

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 151 of 247

Elognum Definition

● Function elognum()

Arguments

● none

Effect

● Returns the number of entries returned in the error memory.

Return value

● data type u16

Example: elognum

Read the last event number and reset the memory by one.

Implementation in the user program:
EventInfo=$$

EventNr=elognum()

if change(EventNr) then EventInfo=elog() endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 152 of 247

Eval

Processingtime

Definition

● Function eval(arg)

Arguments

● 1 argument of arbitrary data type

Effect

● The evaluation of the expression will be carried out independently of the validation
scheme. This is particularly important for the if-statement when nestings shall be imple -
mented in the usual syntax of C programs.

Return value

● Data type of argument

Example: Counter

You want to program a counter which increases a variable by 1 with every processing pass of

the EibPC until it reaches 100.

Implementation in the user program:
Counter=0

if eval(Counter<100) then Counter=Counter+1 endif

Note:

Programming with the help of the validation scheme guarantees a stable and optimized event-based
processing of the telegrams: An expression/variable/function becomes invalid only on change, so
that the EibPC only processes the expressions depending thereof. The function eval interrupts the
validation scheme while processing and hence generates a higher system load.

If you used instead of
if '1/0/0'b01 then write('1/0/1'b01,AUS) endif

if eval('1/0/0'b01) inadvertently, you could cause your KNX installation to crash. We recommend the
use of the function eval only to experienced programmers, because the validation scheme is opti-
mized for the EibPC and its programming.

A statement
if Counter<100 then Counter=Counter+1 endif

normally would be executed only once at system start or when setting the variable Counter e.g. from
102 to 10 as Counter<100 is valid and a further evaluation is not planned.

For nestings, we recommend to use and instead of the function eval, if possible.

Definition

● Function processingtime()

Arguments

● none

Effect

● The EibPC requires a certain amount of time for the processing of its program per cycle.
This processing time is returned with this function in ms.

Return value

● Processing time in ms as data type u16.

Example:

The max. Duration of processing per second should be visualized in a diagram. The maximum

value over all cycles should also be indicated.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 153 of 247

[WebServer]

page(1) [$Test$,$Processingtime$]

mtimechart(1)[EXTLONG,AUTOSCALE,256,0,10,0,1]($Time in ms $,LEFTGRAF, Buffer0)

[EibPC]

Buffer0=0

timebufferconfig(Buffer0, 0, 3600u16, t)

// per Second

t=0u16

if t < processingtime() then t=processingtime() endif

// Maximum

m=0u16

if m < processingtime() then m=processingtime() endif

// write to chart

if cycle(0,1) then {

timebufferadd(Buffer0,t);

t=0u16;

} endif

// Generate some load

y=0f32

if cycle(0,10) then
y=cos(34f32)+sqrt(234f32)+tan(34f32)*7f32+cos(34f32)+sqrt(234f32)+tan(34f32)*7f32+cos(34f32)+sqrt(234f3
2)+tan(34f32)*7f32+cos(34f32)+sqrt(234f32)+tan(34f32)*7f32+cos(34f32)+sqrt(234f32)+tan(34f32)*7f32+cos(
34f32)+sqrt(234f32)+tan(34f32)*7f32+cos(34f32)+sqrt(234f32)+tan(34f32)*7f32 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 154 of 247

System start

End of program

Random number

Definition

● Function systemstart()

Arguments

● none

Effect

● After transferring a new application program or rebooting the EibPC, this function changes
from ON to OFF during the first processing pass.

Return value

● data type b01

Example: systemstart

At system start time, the variables LightsOff and BlindsUp shall be set to 0b01 once.

Implementation in the user program:
if systemstart() then LightsOff=OFF; BlindsUp=DOWN endif

There is no end of the program at the EibPC. An EibPC program is terminated by either disconnect -
ing the power supply or by the user entering a new program. In the latter case, EibStudio sets the
built-in variable SHUTDOWN ON so that the appropriate program can be executed in the user pro-
gram. EibStudio then waits 5 seconds before the application program is stopped. Ongoing running of
the Flash is still running properly.

Example see p. 141

Definition

● Function random(max)

Arguments

● 1 argument max of data type u32

Effect

● Returns a random number in the range of 0 to max.

Return value

● Data type u32

Example: Turn-on pulse at random time

Every evening at 22:00 plus a random time of up to 3 minutes, the variable BlindsDown shall

be set to ON.

Implementation in the user program:
// Random number from 0 to 180 (32-bit unsigned)

RandomNumber=convert(random(180u32),0u08)

// Conversion to minutes and seconds

Min=RandomNumber/60

Sec=RandomNumber-Min*60

if htime(22, Min, Sec) then BlindsDown=AUS endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 155 of 247

Passive Mode Definition

● Function sleep(status)

Arguments

● 1 argument status of data type b01.

Effect

● If the input's value is OFF, the EibPC sends outbound EIB telegrams and UDP packets to
their respective output queue. If the input's value is ON, outbound EIB telegrams and UDP
packets are discarded, i.e. they are not sent to their respective output queue. Data which
are already located in an output queue are not discarded and are written to the bus or the
Ethernet in case of the availability of the respective interface.

Return value

● none

Example: Put the EibPC to passive mode

You want to put an EibPC to passive mode through the group address 2/5/6 (b01).

Implementation in the user program:
if '2/5/6'b01 then sleep(EIN) else sleep(AUS) endif

Note:

This function is helpful when testing a program in an existing system without actually writing to the
bus. Without disrupting users or the program of another EibPC, new programs can be tested (the
web server can be accessed in the usual way). If the EibPC is in passive mode, its internal program
runs normally, i.e. variables are being calculated, states changed, the web server adjusted, etc.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 156 of 247

Create KNX telegram This function creates KNX telegrams at lowest application level. For instance, devices can be ad-
dressed with their physical address, which is the case of the programming of application data. The
EibPC internally works in the group message mode and therefore only logs group telegrams sent to a
group address.

Definition

● Function eibtelegramm(Conntrolfield, Destination, Telegramminfo, data1 ... data18)

Argumente

● Conntrolfield data type u08

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 W 1 P1 P0 0 0

1 0 1 1 1 1 0 0

1*128 + 0*64 + 1*32 + 1*16 + 1*8 + 1*4 + 0*2 + 0*1

u08 Datentyp 188

Figure 1: Controlfield of a KNX Telegram

Bit W: Repeat; is normally set to 1.

P1 and P0 define the priority level. Normally a telegram is sent with low priority: P1=P0=1

A normal telegram therefore will have a Conntrolfield : 10111100b = 188u08

● Destination (physical address or group address) with Data type u16

Bit: 15 .. 12 11 .. 8 7 .. 0

Address main middle low

Expample 1 3 5

Binär: 0001 0011 0101

1*4096 + 1*512+1*256 + 0*8+1*4+0*2+1*1

u16-Data type 4869

Figure 2: Physically Addressing of an Actor with 1/3/5

● Telegraminfo data type u08, split into

a) the type of the given address in Bit 7 (MSB)

value = 0 → physical address

value = 1 → group address

b) routing-Counter Bits 4..6

Counter 7: A telegram will be sent without change through any coupler

Counter 6..1: A telegram will be sent through any coupler, but
the counter will be decremented by 1 when passing it

Counter 0: A telegram will not be sent through any coupler

c) The length of the given data Bits 0..3
 The length is calculated by the given data and therefore this will be calculated

properly by the EibPC itself. The given value will be ignored.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 157 of 247

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 1 1 1 0 0 0 0

0*128 + 1*64 + 1*32 + 0*16 + 0*8 + 0*4 + 0*2 + 0*1

U16 112

Figure 3: Physically Addressing of an Actor with 1/3/5

● date1 .. data18 of data type u08

Depending on the Controlfield the first two bytes e.g. contain the command to run, and in
most cases the information to be transmitted.

● For an available commands, please refer to the literature.

Effect

The state of the input objects are copied to an KNX Telegram object. The individual address of the
sender can not be given, as It will be set to the address of the bus access unit (= interface connected
to the Enertex ® EibPC).

Return value

● none

Example: physical Addressing

Every 10 minutes a read request is to be sent to the actuator with the physical address of 1/3/5

if cycle(10,0) then eibtelegramm(188u08,4869u16,112u08,0u08) endif

// you could also use hex-values

//if cycle(10,0) then eibtelegramm(0xbc,0x1105u16,0x70,0x00) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 158 of 247

Lighting scenes

Scene actuator

Preset scene

Up to 64 scenes per scene function (“scene actuator”) can be stored and recalled. The number of
scene functions (“scene actuators”) is not limited - only by the number of maximum possible group
addresses in the ets.

Stored scenes also persist when interrupting the EibPC's power supply or after changing the applica-
tion program. Only a change of the group addresses relevant to the scenes requires resetting the
scenes (menu PROJECT SETTINGS → FILES).

Definition

● Function scene(GroupAddressSceneActuator, Act1, Act2,, ActN)

Arguments

● GroupAddressSceneActuator of data type u08, the other arguments group addresses of ar-
bitrary data types

● ActXX, XX from 0 to max. 65000: A group address or variable (see Example presetscene).

Effect

● A KNX scene actuator with the group address defined in ActXX (XX 1 to 65000) is imple-
mented. It can be accessed by means of KNX switches and an appropriate ETS
parametrization or via the below-mentioned functions storescene or callscene.

● You can define an arbitrary number of scene actuators.

● You can preset the scenes with presetscene.

Return value

● none

Note:

1. It is possible to deactivate inputs differently in each scene number, see presetscene.

2. You can (like other functions) define an arbitrary number of scene actuators.

3. Each Scene actuator has 64 scenes (1to 64).

Example: Lighting scenes

You want to realize a scene actuator for a dimmer and a lamp.

Implementation in the user program:
scene(“SceneActuator-1/4/3“u08, “Dimmer-1/1/2“, “DimmerValue-1/1/3“, “Lamp-1/1/1“)

Definition

● Function presetscene(GroupAddressSceneActuator, SceneNumber, OptionOverwrite,
ValVar1,KonfVar1,[ValVar2,KonfVar2,..., ValVarN,KonfVarN])

Arguments

● GroupAddressSceneActuator and SceneNumber of data type u08

● OptionOverwrite of data type b01

● ValVarXX with the same data type as Variable respectively GroupaddressActor which is
defined in function scene

● KonfVar of data type b01

Effect

● Create default settings for the sceneactuator with the group address GroupAddressScene-
Actuator and SceneNumber.

● If OptionOverwrite is set to 1b01, an existing dataset will be overwritten on restart of the
programm. By a setting to 0b01, a previously saved scene is not pre-written.

● SceneNumber a value 0 to 63 of data type u08, which indicates the szene number, which
is to be pre-defined.

● KonfVarXX, XX from 0 to max. 65000, indicates, if the corresponding input object is active
in this scene number. Active at 1b01, inactive at 0b01. If acitve, the Value ValVarXX is the
corresponding preset value.

Return value

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 159 of 247

Store scene

Example: Lighting scenes with presetscene

You want to realize a scene actuator for a dimmer and a lamp.

Also variable Var1 and Var2 shall change.

Scene actuator SceneActuator-1/4/3“u08, number 13 sould be preallocated like this:

- scenes that have been already saved will be overwritten

- the dimmer should be inactive in Szene-number 13

- the lamp an the two variables Var1 and Var2 should be active (send an ON signal to “Lamp-

1/1/1“ , set Var1 to -20 and Var2 to “scene on”)

Implementation in the user program:
Var1=123s32

Var2=$scene off$c14

scene(“SceneActuator-1/4/3“u08, “Dimmer-1/1/2“, “DimmerValue-1/1/3“, “Lamp-1/1/1“, Var1, Var2)

presetscene(“SceneActuator-1/4/3“u08, 13, ON, ON, OFF, 50%, OFF,ON, ON, -20s32, ON, $scene on$, ON)

Remark:

The functions scene and presetscene are „toplevel“, which means independent of an if-condition.

The macro library EnertexScene.lib uses this functions and make the handling of this easier.

Definition

● Function storescene(GroupAddressSceneActuator, number)

Arguments

● 2 arguments: GroupAddressSceneActuator and number of data type u08

Effect

● This function requires the parametrization of a scene actuator to this group address (either
KNX scene actuators or scene functions).

● The function triggers a telegram to GroupAddressSceneActuator and thereby storing the
scene number.

Return value

● none

Example: storescene

You want to store the scene defined in the above example of scene in number 1.

Implementation in the user program:
if ButtonStoreScene==ON then storescene(“SceneActuator-1/4/3“u08,1) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 160 of 247

Call scene Definition

● Function callscene(GroupAddressSceneActuator, number)

Arguments

● 2 arguments: GroupAddressSceneActuator and number of data type u08

Effect

● This function requires the parametrization of a scene actuator to this group address (either
KNX scene actuators or scene functions).

● The function triggers a telegram to GroupAddressSceneActuator and thereby recalling the
scene number.

Return value

● none

Example: Callscene

You want to recall the scene defined in the above example of scene in number 1.

Implementation in the user program:
if ButtonRecallScene==EIN then callscene(“SceneActuator-1/4/3“u08,1) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 161 of 247

Strings

Concatenate

Find

Strings can be defined variable from 1 to 65534 bytes. Thereby the corresponding endpoint has to be

specified behind the character string. E.g. a string with the length of 55 bytes will be defined as fol-

lows: string= $$c55

The data type c14 will be treated seperately by the compiler because he is compatible with the KNX
data type EIS15 and has in contrast to all other strings any zero termination at the end, Gegensatz
zu allen anderen Strings keine Nullterminierung am Ende hat, as well as any special characters are
not allowed.

Definition

● string1 + string2 [+ string3 ... stringN]

Arguments

● An arbitrary number of arguments, but either all of data type c14 or all of data type c1400.

Effect

● The character strings are concatenated. If the resulting length exceeds the maximum
length of the data type, the result is truncated to this length.

Return value

● Data type of arguments

Example: Addition of character strings

The character strings string1 and string2 shall be “added“ or concatenated.

Implementation in the user program:
string1=$Character$

string2=$String$

// result: “CharacterString”

result=string1+string2

Definition

● Function find(string1, string2, pos1)

Arguments

● 3 arguments, string1, string2 of data type c1400, pos1 of data type u16

Effect

● string1: Character string a (partial) character string shall be searched for in.

● string2: Character string to be searched for.

● pos1: Ignore the first pos1 incidences of the character string to be searched for.

● The function returns the position of the first character of the found character string

(0..65534u16). It returns 65535u16 (constant EOS) if the character string has not been

found

Return value

● Data type u16

Example: Search a character string

In the variable String=$CharacterString$, the character string “String” shall be searched for. No

(0) incidences shall be ignored.

If “String” is not found, the variable Error shall be set to 1.

Implementation in the user program:
Error

String=$CharacterString$

Find=$String$

Result=find(String,Find,0u16)

if Result==1400u16 then Error=EIN endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 162 of 247

Stringcast

Stringset

Definition

● Function stringcast(string, data, pos)

Arguments

● 3 arguments: string of data type c1400, data of arbitrary data type, pos of data type u16

Effect

● string: Character string (1400 bytes) a certain number of bytes of which shall be copied to
another data type. The number of bytes is defined by the data type of data. At this, only the
raw data will be copied (cast) and no conversion of the data types is performed.

● pos: The position of the 1st character of the character string to be copied to the target type.

Return value

● n Bits (n = length of data in bytes) from string, i.e. raw data are returned.

Example: Conversion of a string into a floating point number

In the variable a=98, the first two bytes character shall be written to a floating point number

Implementation in the user program:
a=98

z=stringcast(a,0.0,0u16)

// z interprets 0x39 0x38 (ASCII „98“) as „72.9600000“

Note:

In connection with stringset and stringcast, c1400 character strings can be used to manage data ar-
rays. See the example of stringset on page 162.

Definition

● Function stringset(string, data, pos)

Arguments

● 3 arguments: string of data type c1400, data of arbitrary data type, pos of data type u16

Effect

● string: Character string one ore more bytes of which shall be replaced.

● data: This bytes (= characters) replace characters of string. If data is of type c, the termi-
nating Zero byte of data is omitted.

● pos: The position of the bytes in string to be replaced. The number of bytes arises from the
data type of data.

Return value

● none

Example: Replace a character sequence

In the variable a=$ nnette$, the 1st character shall be set to 65 =('A').

Implementation in the user program:
a=$ nnette$

if systemstart() then stringset(a,65,0u16) endif

Example: Create and read a data array

The 15-min-values of the temperature from group address '1/1/1'f16 shall be stored in a data

array. At the same time, the temperature difference of the last change shall be extracted from

this data array.

The implementation is as follows. Note, the user has to be aware of the byte length of the data.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 163 of 247

1400 Bytes of the character string

can be used.

By means of the debugger (page. 25), you can also view the “raw data” in the data array. However,
this should make sense only for integers.

[EibPC]

array=$$

Var='1/1/1'f16

ReadVar=0.0

// Bytessize of f16 == 2

ByteSize=2u16

Pos=0u16

if cycle(15,0) then {

Pos=Pos+ByteSize;

stringset(array,Var,Pos);

if Pos==END then Pos=0u16 endif

} endif

if cycle(15,0) then {

if (Pos>2u16) then {

ReadVar=stringcast(array,Var,Pos-ByteSize)-stringcast(array,Var,Pos)

} endif

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 164 of 247

String format Definition

● Function stringformat(data, conversion_type, format, field_width,[precision])

Arguments

● Argument data of data type uXX, sXX, fXX with arbitrary XX as defined on page 27.

● Arguments format, field_width, precision, conversion_type of data type u08

Effect

● conversion_type

○ 0: uXX / iXX → decimal notation

○ 1: uXX / iXX → octal notation

○ 2: uXX / iXX → hexadecimal notation ('x')

○ 3: uXX / iXX → hexadecimal notation ('X')

○ 4: fXX → floating-point notation

○ 5: fXX → exponential notation ('e')

○ 6: fXX → exponential notation ('E')

● format defines formatting as follows:

○ 0: (no effect)

○ 1: A blank before a positive number (only permitted if data is of data type sXX or fXX

and no conversion into octal or hexadecimal notation)

○ 2: A sign before a positive number (only permitted if data is of data type sXX or fXX

and no conversion into octal or hexadecimal notation)

○ 3: Zero-padded (ignored if data is of data type uXX or sXX and a precision is given)

○ 4: Zero-padded and a blank before a positive number (only permitted if data is of data

type sXX or fXX and no conversion into octal or hexadecimal notation; ignored if data

is of data type uXX or sXX and a precision is given)

○ 5: Zero-padded and a sign before a positive number (only permitted if data is of data

type sXX or fXX and no conversion into octal or hexadecimal notation; ignored if data

is of data type uXX or sXX and a precision is given)

○ 6: Left-justified

○ 7: Left-justified and a blank before a positive number (only permitted if data is of data

type sXX or fXX and no conversion into octal or hexadecimal notation)

○ 8: Left-justified and a sign before a positive number (only permitted if data is of data

type sXX or fXX and no conversion into octal or hexadecimal notation)

○ 9: Alternative notation (man 3 printf) (only permitted if no conversion into decimal no-

tation)

○ 10: Alternative notation (man 3 printf) and a blank before a positive number (only per-

mitted if data is of data type fXX)

○ 11: Alternative notation (man 3 printf) and a sign before a positive number (only per-

mitted if data is of data type fXX)

○ 12: Alternative notation (man 3 printf) and zero-padded (only permitted if no conver-

sion into decimal notation; ignored if data is of data type uXX or sXX and a precision

is given)

○ 13: Alternative notation (man 3 printf), zero-padded and a blank before a positive

number (only permitted if data is of data type fXX)

○ 14: Alternative notation (man 3 printf), zero-padded and a sign before a positive num-

ber (only permitted if data is of data type fXX)

○ 15: Alternative notation (man 3 printf) and left-justified (only permitted if no conversion

into decimal notation)

○ 16: Alternative notation (man 3 printf), left-justified and a blank before a positive num-

ber (only permitted if data is of data type fXX)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 165 of 247

○ 17: Alternative notation (man 3 printf), left-justified and a sign before a positive num-

ber (only permitted if data is of data type fXX)

○ 18: Prefix 0x also for a zero and zero-padded (only permitted for a conversion into

hexadecimal notation 'x'; ignored if precision is given).

○ 19: Prefix 0x also for a zero and left-justified (only permitted for a conversion into

hexadecimal notation 'x').

○ 20: Prefix 0X also for a zero and zero-padded (only permitted for a conversion into

hexadecimal notation 'X'; ignored if precision is given).

○ 21: Prefix 0X also for a zero and left-justified (only permitted for a conversion into

hexadecimal notation 'X').

● field_width: Definition of the minimum field width

● precision: Definition of the precision

Return value

● Data type c1400

Example: Stop watch V2 (Cf. Example:Stop watch, page 119).

Timing the seconds at which the variable Stopper_Go has the value ON. A c1400 text string

shall be given that prints the time in the format 000d:000h:000m:000s (days, hours, minutes,

seconds).

Here the implementation, at which the seconds can be found in the variable Stopper_time and the
formatted output in Stopper. In contrast to Example:Stop watch (page 119), the time difference is
counted by means of after.

Stopper=$$

Stopper_time=0s32

Stopper_Go=AUS

if (Stopper_Go) then {

Stopper_time=1s32;

write(address(85u16),$Start$c14)

} endif

if after(change(Stopper_time),1000u64) then Stopper_time=Stopper_time+1s32 endif

// End of stop time

if !Stopper_Go then {

Stopper=stringformat(Stopper_time/86400s32,0,3,3,3)+$d:$+\\

 stringformat(mod(Stopper_time,86400s32)/3600s32,0,3,3,3)+$h:$+\\

 stringformat(mod(Stopper_time,3600s32)/60s32,0,3,3,3)+$m:$+\\

 stringformat(mod(Stopper_time,60s32),0,3,3,3)+s

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 166 of 247

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 167 of 247

Typical configurations:

Value Function arguments Result Meaning

pi=3.1415926535f32 stringformat(pi, 4, 1, 0, 2) $ 3.14$ Space or minus sign, two
digitals

stringformat(-pi, 4, 1, 0, 1) -3.1 one decimal

stringformat(pi, 4, 6, 0, 2) 3.14 left-aligned, two decimals

stringformat(pi, 4, 1, 0, 4) $ 3.1416$ space or minus sign, four
decimals

stringformat(pi, 4, 1, 10, 4) $ 3.1416$ 10 chars incl. “.”, fill left w/
spaces

e=.00000000000000
000016f32

stringformat(e, 5, 6, 0, 2) $1.60e-19$ Sci. notation

nowH=5u32 stringformat(nowH, 0, 3, 2, 2) 05 Fill left w/ 0, two digits

stringformat(nowH, 0, 3, 4, 2) $ 05$ Leading zero for two digits,
fill with spaces for four char-
acters

rgb1=0x0000ffu24

rgb2=255u24

stringformat(rgb1, 2, 18, 0, 6)

stringformat(rgb2, 2, 18, 0, 6)

$0x0000ff$

$0x0000ff$

Convert to lower-case Hex w/
leading 0x and fill with 0 up
to 6 digits

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 168 of 247

Split

Size

Definition

● Function split(string, pos1, pos2)

Arguments

● 3 arguments, string of data type c1400, pos1 and pos2 of data type u16

Effect

● string: Character string a character string shall be extracted from.

● pos1: Position of the first character of the character string to be extracted (0...1399u16).

● pos2: Position of the last character of the character string to be extracted (0...1399u16). If
pos2 equals 65534u16 (predefined constant END), the character string will be separated
up to its end.

● The variable string must be of data type c1400.

● Return value: The character string extracted from string.

Return value

● A character string of data type c1400.

Example: split

The character string „String“ shall be extracted from the variable string=$CharacterString$.

The first character of the character string to be separated has position 8 (counting starts at 0),

the last character has position 13.

Implementation in the user program:
string=$CharacterString$

result=split(string, 8u16,13u16)

Example: Search a character string (2)

The character string “Hello” shall be separated from the variable

string=$CharacterString:Hello$.

Implementation in the user program:
String=$CharacterString:Hello$

PartialString=split(String,find(String,$:$,0u16),1399u16)

Definition

● Function size(string, encoding)

Arguments

● string (c)

● encoding (c14) optional

Effect

● The length of character string string shall be determined. The length is given by the termi-
nation character ”\0“ at the end of character strings.

● If encoding is omitted, ASCII is used.

● See encode (p. 169) for values of encoding.

Return value

● Data type u16

Example: size

The length of string=$CharacterString$ shall be determined.

Implementation in the user program:
string=$CharacterString$

result=size(string)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 169 of 247

Capacity

Tostring

Encode

Definition

● Function capacity(String)

Arguments

● An argument, string of data type c1400 respectively with a self defined string length

Effect

● From the string band String the maximum available length is to be determined

Return value

● Data type u16

Example: capacity

The maximum available length of the string=$string band$ is to be determined.

Implementation in the user program:
string=$string band$

result=capacity(string)

Definition

● Function tostring(char1[,char2, ... charN])

Arguments

● At least one argument, char1 of the data type u08 as the character code of the UTF-8 en-
coding (see http://de.wikipedia.org/wiki/UTF-8)

Effect

● A string from the individual bytes is formed, the terminating zero is automatically appended

Return value

● Data type c1400

Example: capacity

The maximum available length of the string=$string band$ is to be determined.

Implementation in the user program
Eurosign=tostring(0xE2,0x82,0xAC)

Definition

● Function encode(string, source encoding, target encoding)

Arguments

● An argument, string of data type c1400 respectively with a self defined string length

● Source encoding with the usual designation, e.g. „UTF-8“

● Target encoding with the usual designation, e.g. „UTF-8“

Effect

● A string band string, which is present in the source encoding, is going to be transferred in
the target encoding.

Return value

● Data type string format

Example: encode

Recode a string from UTF-8 to ISO-8859

Implementation in the user program:
// String

s1=$Hallöchen$c4000

// String code from UTF to Windows (German);

sDE=encode(s1,$UTF-8$c14,$ISO-8859-15$c14)

Recode a string from EISO-8859 to UTF-8

// String code from UTF to Windows (Europe):

sEU=encode(s1,$UTF-8$c14,$ISO-8859-1$c14)

sUTF=encode(sDE,$ISO-8859-1$c14,$UTF-8$c14)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 170 of 247

Urldecode

Urlencode

MD5

Definition

● Function urldecode(string, source encoding, target encoding)

Arguments

● String data type c1400 or with a user-defined string length

● Source encoding with the usual designations, e.g. „UTF-8“

● Target encoding with the usual designations, e.g. „UTF-8“

Effect

● A string String, which is in source encoding, is transmitted to the target encoding using the
URL encoding.

Return value

● Data type string format

Example: encode

Recode a string $ÜberMich.de$

Implementation in the user program

// String:org: $Hallöchen auf http:\\enertex.de$

org=urldecode($Hall%c3%b6chen%20auf%20http%3a%5c%5cenertex.de$,$utf-8$c14,$utf-8$c14)

Definition

● urlencocode(string, source encoding, target encoding)

Arguments

● String data type c1400 or with a user-defined string length

● Source encoding with the usual designation, e.g. „UTF-8“

● Target encoding with the usual designation, e.g. „UTF-8“

Effect

● A string String, which is in source encoding, is transmitted to the target encoding using the
URL encoding.

Return value

● Data type string format

Example: encode

Recode a string $ÜberMich.de$

Implementation in the user program

// String ulr=$Hall%c3%b6chen%20auf%20http%3a%5c%5cenertex.de$

url=urlencode($Hallöchen auf http:\\enertex.de$,$utf-8$c14,$utf-8$c14)

Definition

● md5sum(string)

Arguments

● Argument string of any length

Effect

● The MD5 sum of the string is calculated. The result is returned as a string.

● Result (Return)

● Data type cXXXXX with the same string length as the output string.

Example ping

The value of the MD5 sum of the string $ fdzehkdkhfckdhk %% $ is to be determined

string=$fdzehkdkhfckdhk%%$

md5=md5sum(string)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 171 of 247

Hash

Lower case

Upper case

Definition

• hash(Algorithm, String, Length)

Arguments

• Algorithm (u08)

• String (c)

• Length (u16) optional

Effect

• Return hash value as string of String with given Algorithm

• Algorithm must be one of:
HASH_MD5=0u08,
HASH_SHA1=1u08,
HASH_SHA256=2u08,
HASH_SHA512=3u08

• Length Bytes are hashed. Default: size(String)

Return value (c)

• Hexs string of hash in ASCII encoding (c1400)

Example

Get SHA1-Hash of string $Enertex$

sha1sum=sha1(HASH_SHA1, $Enertex$)

// Result: $1e00fa0ed981756b1fd4344a1467e8b6c52e476f$

Definition

• tolower(String)

Arguments

• String (c)

Effect

• Convert all ASCII characters to lowercase

Return value (c)

• String length of String

Example

Convert $Enertex$ into lowercase

input1=$AlLeSgRosS$

lower_ascii=tolower(input1)

// Result: $allesgross$

Definition

• toupper(String)

Arguments

• String (c)

Effect

• Convert all ASCII characters to uppercase

Return value (c)

• String length of String

Beispiel

Convert $Enertex$ into uppercase

input1=$AlLeSgRosS$

upper_ascii=toupper(input1)

// Result: $ALLESGROSS$

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 172 of 247

Base64 encode

Base64 decode

Definition

• base64encode(String, Length)

Arguments

• String (c)

• Length (u16) (optional) length of the string to convert. Default: size(String).

Effect

• All characters of String (up to Length) are Base64-encoded. If Length is omitted, encoding
of strings stops with the first 0-Byte. The 0-byte is not encoded.

• Please mind: Base64-encoding requires more bytes than the input. The data type of String
must be large enough for the result.

Return value (c)

• String with the same size as String

Example

Encode the string $Enertex$ in base64

base64=base64encode($Enertex$)

// base64 is $RW5lcnRleA==$

Definition

• base64decode(String)

Arguments

• String (c)

Effect

• All characters in String are decoded. Control characters are also decoded.

Return value (c)

• String with the same size as String

Example

Decode the base64 encoded string $RW5lcnRleA==$

plain=base64decode($RW5lcnRleA==$)

// plain is $Enertex$

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 173 of 247

TLS certificates, private keys, root

certificates/CA certificates

Definition

• pem(String)

Arguments

• String (c)

Effect

• String is formatted into PEM format for functions, which require certificates.

• Required because strings cannot be defined with line breaks.

• To bundle multiple certificates, concatenate the single pem()-return values with CR.

• Please mind: certificates often require more than the default string length of 1400 charac-
ters.

Return value (c)

• String with the same size as String

Example

Accept the self signed certificate of a local web server

cert=pem($-----BEGIN CERTIFICATE-----
MIIDUDCCAjigAwIBAgIJALvECSjcmOhXMA0GCSqGSIb3DQEBCwUAMB8xHTAbBgNVBAMMFEVuZXJ0Z
XggRU5BIFNOMTExIENBMB4XDTIyMDgzMTEwNDgxOVoXDTM4MDExNzEwNDgxOVowHzEdMBsGA1UE
AwwURW5lcnRleCBFTkEgU04xMTEgQ0EwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDIyL
1tsDMp8d98yDHQPvWRUYZD5nyrHTmkdyiz4nckHvm9H8wx1bO8EjXn+m7AXdglIRulf6Ni48alvnb77Ld9Xgjl
LeHJUeuiX651OIDwR8BBYsQfLp5qzp/L5gwSDKo2Or1Hs+GISqedaLNN3+h/tit2d/
g04j9vjK5qE97HIKoRfJv0wVuuGtyy6azHwXGjbKYlFjbIDH+FXHpL5WTZScxyOyISVFCjXcYvuyWVGhQKSW
+vpOUA3S3IAWj7YB+yvINeEXYAZgZ5kcawa9dvVM/zdgoPe42cL8wuVRsBzng9XQjAcCqibv/
ComRCm4l6jhbJL2dWZCYcAtkZwQQ1AgMBAAGjgY4wgYswHQYDVR0OBBYEFMpsNzzdS9s7/
JfA2LIKn2z2m7m3ME8GA1UdIwRIMEaAFMpsNzzdS9s7/
JfA2LIKn2z2m7m3oSOkITAfMR0wGwYDVQQDDBRFbmVydGV4IEVOQSBTTjExMSBDQYIJALvECSjcmOh
XMAwGA1UdEwQFMAMBAf8wCwYDVR0PBAQDAgEGMA0GCSqGSIb3DQEBCwUAA4IBAQAJyPComoQF
ZrLG8rdd0yXEP3OuNsVjYxU4ZswZ56qWyrMk6aEHH2FghbEzERxjkdJGgNm7ZWpAhhlb0ZMfh0qUc9toQcN
vT7fRV7YXSRQ/dhkQFBeVVd0Dx75GFhqpDBf3GSwVZGM799nPPj3rPmxiXy9S6OQXyyKVrhoJyQ/
vTm3HX/URZ/
+05m8hdgcK6TZ6SNVCWPs07pUZgsMyZzf1Vzya3uOwaBHQ0C7alU+2PGPGUE3ld3uDzfyLnmt9NPvYFD
BHoqGiV3p82N1HUQfoJOh/
PkBLG9UqdTNVbraW+SE8ZHpeHyDcOLa3HKjgsmW4GoKryz6MUzuOxud8PvgC-----END
CERTIFICATE-----$c1400)

// cert is $-----BEGIN CERTIFICATE-----

MIIDUDCCAjigAwIBAgIJALvECSjcmOhXMA0GCSqGSIb3DQEBCwUAMB8xHTAbBgNV

BAMMFEVuZXJ0ZXggRU5BIFNOMTExIENBMB4XDTIyMDgzMTEwNDgxOVoXDTM4MDEx

NzEwNDgxOVowHzEdMBsGA1UEAwwURW5lcnRleCBFTkEgU04xMTEgQ0EwggEiMA0G

CSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDIyL1tsDMp8d98yDHQPvWRUYZD5nyr

HTmkdyiz4nckHvm9H8wx1bO8EjXn+m7AXdglIRulf6Ni48alvnb77Ld9XgjlLeHJ

UeuiX651OIDwR8BBYsQfLp5qzp/L5gwSDKo2Or1Hs+GISqedaLNN3+h/tit2d/g0

4j9vjK5qE97HIKoRfJv0wVuuGtyy6azHwXGjbKYlFjbIDH+FXHpL5WTZScxyOyIS

VFCjXcYvuyWVGhQKSW+vpOUA3S3IAWj7YB+yvINeEXYAZgZ5kcawa9dvVM/zdgoP

e42cL8wuVRsBzng9XQjAcCqibv/ComRCm4l6jhbJL2dWZCYcAtkZwQQ1AgMBAAGj

gY4wgYswHQYDVR0OBBYEFMpsNzzdS9s7/JfA2LIKn2z2m7m3ME8GA1UdIwRIMEaA

FMpsNzzdS9s7/JfA2LIKn2z2m7m3oSOkITAfMR0wGwYDVQQDDBRFbmVydGV4IEVO

QSBTTjExMSBDQYIJALvECSjcmOhXMAwGA1UdEwQFMAMBAf8wCwYDVR0PBAQDAgEG

MA0GCSqGSIb3DQEBCwUAA4IBAQAJyPComoQFZrLG8rdd0yXEP3OuNsVjYxU4ZswZ

56qWyrMk6aEHH2FghbEzERxjkdJGgNm7ZWpAhhlb0ZMfh0qUc9toQcNvT7fRV7YX

SRQ/dhkQFBeVVd0Dx75GFhqpDBf3GSwVZGM799nPPj3rPmxiXy9S6OQXyyKVrhoJ

yQ/vTm3HX/URZ/+05m8hdgcK6TZ6SNVCWPs07pUZgsMyZzf1Vzya3uOwaBHQ0C7a

lU+2PGPGUE3ld3uDzfyLnmt9NPvYFDBHoqGiV3p82N1HUQfoJOh/PkBLG9UqdTNV

braW+SE8ZHpeHyDcOLa3HKjgsmW4GoKryz6MUzuOxud8PvgC

-----END CERTIFICATE-----$c1400

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 174 of 247

Parser

XML

JSON

The following functions are useful to process the result of HTTP-Requests.

Definition

• parsexml(String, XPath, Return-Length)

Arguments

• String (c)

• XPath (c)

• Return-Length (c)

Effect

• Parse the XML string String and return the XML nodes references with XPath.
See https://www.w3schools.com/xml/xml_xpath.asp for a detailed description of XPath.

• Selected nodes can be single attributes, values and sub-trees. When multiple attributes
are selected, only the last attribute is returned.

• If multiple nodes are selected, they are returned as child nodes of a new <root/> node con-
verted into a string which can be parsed again.

• If nothing matches XPath the result is empty

• The argument Return-Length only defines the length of the returned value. Its value is
never used.

• If String or XPath are empty, the result is empty

Return value (c)

• String length of Return-Length

Hint

• Array indices start with 1

Beispiel

Select an attribute from a non-empty node:

xml=$<root><node></node><node></node><node attr="attribute">content</node></root>$
attr=parsexml(xml, $//node[string-length() > 0]/@attr$, $$c9)

// Result: attr=$attribute$c9

Definition

• parsejson(String, JSONPointer, Rückgabelänge)

Arguments

• String (c)

• JSONPointer (c)

• Rückgabelänge (c)

Effect

• Parse the JSON string String and return the property references by JSONPointer.
See https://tools.ietf.org/html/rfc6901 for a detailed description of JSONPointer.

• Selected properties can be single values (number, string) and object properties. Only a sin-
gle property can be selected. Objects are returned as new JSON object which can be
parsed again.

• If nothing matches JSONPointer the result is empty

• The argument Return-Length only defines the length of the returned value. Its value is
never used.

Return value (c)

• String length of Return-Length

Hint

• Array indices start with 0

Beispiel

Select a property from a JSON object string

json=${"number": 5, "array": ["x","y"]}$
number=parsejson(json, $/number$, $$c1)

// Result: number=5c1

arrayElement=parsejson(json, $/array/1$,$$c1)

// Result:arrayElement=y, first element at index 0!

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

https://tools.ietf.org/html/rfc6901
https://www.w3schools.com/xml/xml_xpath.asp

Expert Functions S. 175 of 247

KNX Telegrams

write

read

Writing information to the KNXTM bus is realized with the help of the write function.

Definition

● write(GroupAddress, Value)

Arguments

● 2 arguments of the same data type, but otherwise the data types are arbitrary..

● GroupAddress: Imported or manual KNXTM group address

● Value: The value which is to be written to the KNX™ group address (via the KNX™ bus)

Effect

● A valid KNX which writes the value to the group address is sent to the bus.

Data type result (return value)

● none

Example
write("BasementWC

write('1/0/1'u08,10%) endif

Note: The data types "u08" and "%" are equivalent and compatible (see also page 26).

Send read request

Definition

● read(GroupAddress)

Arguments

● GroupAddress: Imported or manual KNXTM group address

● The groupaddress can be optionally negated using the !-Sign.

Effect

● A valid KNX telegram with the "read-flag" set is sent to the bus. Confirm, that the actors
are parameterized properly (set read flag).

Return value

● none

Note:

The flag in the ETS program must also be set so that the actuator in the KNX network responds.

Example: Querying the actual temperature from the bus

A temperature sensor can send a temperature value in floating point format f16 (16 bit) to the

address 2/3/4. The bit "read request" is set in the ets, i.e. the temperature can be retrieved via

a read request..

Every day at 18:30 clock and 20 seconds, the variable should be obtained from temperature

sensor.

Implementation:
Temperature='2/3/4'f16

if chtime(18,30,20) then read('2/3/4'f16) endif

By means of the command Variable = Group address the information, which is sent to the group ad-
dress triggered by the read function, is assigned to a variable.

Overall, the process of the example can be illustrated in 4.

Figure 4: Operation of read

Once the time has been reached 18:30:20, chtime goes to ON, the condition of the if statement is
true and the read sends the read request. Now the actuator responds and sends the value to the
group address '2/3/4'f16.

Note:

Instead of using read('2/3/4'f16) it is possible to code with the invert-sign read(!'2/3/4'f16).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

18:30:20 read '2/3/4'

sends '2/3/4'

Actor

Temperature='2/3/4'f16

Expert Functions S. 176 of 247

event This function always responds when a telegram is written for the monitored address on the bus. It
does not respond to variables.

In connection with UDP, TCP or RS232 telegrams, it reacts to the arrival of packets.

An event function is defined as follows:

Definition

● Function event(Group address)

Arguments

● Group address: Imported or manual KNXTM group address

● The groupaddress can be optionally negated using the !-Sign.

● For UDP, TCP or RS232 telegrams the event function can be applied.

Effect

● Return value: 1b01 (ON pulse) when a telegram with the group address is on the KNX TM

bus, regardless of its content.

t

t

Group address

event(Group address)

ON

OFF

ON

OFF

ON

Data type results (Return value)

● Data type b01

One special characteristic of the event functions is that this function may not be placed at if state-
ments with else-branch. The event-function is only switched to ON for one processing cycle and will
be execute the then-branch of the if-statement on the arrival of a telegram to the group address. In
the next cycle, event returns to OFF and now the else branch is executed. To simplify programming,
here the use of the event function is limited by the compiler.

An example of using the event function.

Whenever the address "MotionDetector-3/2/3" or "MotionDetector-3/2/4" gets an event, the

variable light is set to ON. After 3 minutes, the variable light should be reset to OFF.

The reaction is then:

if (event(“MotionDetector-3/2/3“)) or (event(!“MotionDetector-3/2/4“)) then Light=EIN endif

if(after(Light,30000u64)==EIN) then Light=AUS endif

The monitoring of bus activity to a group address will be realized with the help of the event function.
For deeper analysis of the KNX telegrams the event-Functions described on the next pages can dis-
tinguish

1. a normal write,

2. a read

3. a response to a preceeding read.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 177 of 247

eventread

eventresponse

eventwrite

writeresponse

Definition

● Function eventread(Group address)

Arguments

● Group address: Imported or manual KNXTM group address

● The group address can be optionally negated using the !-Sign.

Effect

● Return value: 1b01 (ON pulse) when a Read-telegram with the group address has been
written on the KNXTM bus, regardless of its content.

Data type results (Return value)

● Data type b01

Definition

● Function eventresponse(Group address)

Arguments

● Group address: Imported or manual KNXTM group address

● The group address can be optionally negated using the !-Sign.

Effect

● Return value: 1b01 (ON pulse) when an answer to a Read-telegram with the group address
has been written on the KNXTM bus, regardless of its content.

Data type results (Return value)

● Data type b01

Definition

● Function eventwrite(Group address)

Arguments

● Group address: Imported or manual KNXTM group address

● The groupaddress can be optionally negated using the !-Sign.

Effect

● Return value: 1b01 (ON pulse) when an write-telegram with the group address has been
written on the KNXTM bus, regardless of its content.

Data type results (Return value)

● Data type b01

Definition

● Function writeresponse(Group address,value)

Arguments

● Group address: Imported or manual KNXTM group address

● Value: The value which is to be written to the KNX™ group address (via the KNX™ bus)

Effect

● Responds to a read request by a valid telegram generated by KNXTM which writes the

value to the group address is sent to the bus. The response flag is set in the telegram.

Data type results (Return value)

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 178 of 247

Init group address Definition

● initga(GroupAddress)

Arguments

● GroupAddress: Imported or manual KNXTM group address

● The groupaddress can be optionally negated using the !-Sign.

Effect

● The effect of this function is same as if the GroupAddress was listed in the [InitGA]-sec-
tion.

● The function can be used top-level only, which means, that it can not be used in a then or
else branch of an if-query.

● The function can also be used in related to the function comobject (p. 149)

Return value

● none

Alternatively to the syntax above the following is possible, too:

Example
[EibPC]

// Temperature manually defined

initGA('2/3/4'f16)

initGA(“Heating-2/3/4”)

initGA(“Lights-2/3/2”)

if “Lights-2/3/2” and '2/3/4'f16<10.0 then write(“Heating-2/3/4”,100%) endif

Example 2 - comobject

The following example shows the use in combination with the function comobject.

[EibPC]

initga(!"Licht KG Treppe-0/0/2")

initga(comobject("Licht EG -Decke Flur-0/0/14","Licht EG Speis-0/0/18"))

Both the use of negations and the function comobject are possible combined with the function initga.
This has significant advantages of the programming of macros.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 179 of 247

KNX-Telegram-Routing

Address

Readknx

With help of the functions address and readknx the EibPC can used as an free programmable router
for KNX telegrams. If e.g. the group address is sent (as number) to the EibPC via TCP/IP client, it is
possible to write via the function address to this group address a given value, without any additional
program code. Similar an incoming KNX telegram will be signaled by the readknx function to the
TCP/IP client. The Opensource project "EibPC-Homecontrol" uses this functionality. The function ad-
dress can be used as first argument instead of the group address in the functions: event, write,
scene et cetera.

This function generates a group address from a u16 number to be used when accessing the bus.

Definition

● Function address(variable)

Arguments

● 1 argument of data type u16

Effect

● Return value: A group address as it can be used with write, read etc..

Return value

● Data type group address

As a particular feature of the bus access functions, they expect group addresses as arguments.
E.g. the 1st argument of write('5/3/11'b01, ON) has to be a group address. The function address converts a u16 num-
ber into a group address. This number is calculated as address= [main group] x 2048+[middle group] x 256 + [sub-
group], with [main group]=5, [middle group]=3 and [subgroup]=11 for the example '5/3/11'. You have to calculate this
number by yourself or you can use the function getaddress.

Example: address

You want to write ON to group address '5/3/11'b01at system startup.

Implementation in the user program:
if systemstart() then write(address(11019u16),ON) endif

Definition

● Function readknx(Number, Output)

Arguments

● Number of data type u16

● Output of data type c1400

Effect

● An incoming KNX telegram will make the function wriingt the group address of the tele-
gram in the variable named Number. The binary data of the telegram is stored in the vari -
able named Output. Output is changing its type to that of the last incoming telegramm To
convert it back, use convert as shown in the example.

Return value

● Result of the conversion of the KNX telegrams binary data

Note:

The function event can used with readknx function (see example).

Example: Sending all incoming KNX telegrams via UDP:

Following code will send all telegrams received from the KNX bus via UDP to the client with

the IP 192.168.22.199. The group address of the telegram is sent in u16 format and the

information as a string in the format GA:XXXXX INF:YYYYYYY .

adr=0u16

info=$$

if event(readknx(adr,info)) then {

sendudp (5000u16, 192.168.22.199,$GA:$+convert(adr,$$)+$INF:$+info)

}endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 180 of 247

Readrawknx Definition

● Function readrawknx(control field, phyAddress, targetAddress, IsGroubAddress, routing-
Counter, bitLength, userData)

Arguments

● control field of data type u08

● phyAddress of data type u16 (he transmitter's address in the usual notation, e.g. 2.4.13)

● targetAddress of data type u16

● IsGroubAddress of data type b01

● routingCounter of data type u08

● bitLength of data type u08

● userData of data type c1400

Find further information about the telegram structure on p. 156

Effect

● If a KNX telegram observed, every function readrawknx updates its arguments. The argu-
ments of the readrawknx function are filled with data up to the length of its arguments. In
any case, the variables phyAddress and groubAddress of the function readrawknx are
overwritten with the current data of the transmitter every time a KNX telegram is received.

● The physically address (variable phyAddress) is defined in the usual notation (e.g. 2.4.13)

● The IsGroubAddress shows, wheather the telegram is addressed to a physical address or
a group address.

● To detect incoming telegrams, the function event can be applied to readrawknx. This will
become necessary ,if telegrams with identical content have to be evaluated.

Return value

● none

Example: Write data received from KNX telegrams to the KNX bus

Count telegrams who were send by physically address 1.3.14

Implementation in the user program:
Raw_Kontroll=0

Raw_Sender=10.2.1

Raw_GA=0u16

Raw_IsGa=OFF

Raw_RoutingCnt=0

Raw_Len=0

Raw_Data=$$

count=0u08

if event(readrawknx(Raw_Kontroll,Raw_Sender,Raw_GA,Raw_IsGa,Raw_RoutingCnt, Raw_Len,Raw_Data))
and Raw_Sender==1.3.14 and Raw_GA==getaddress('2/4/44'b01) and Raw_IsGa then {

count=count+1

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 181 of 247

Example: monitoring actuator

It checks whether from a KNX device at least 120 minutes a telegram arrives.

In addition, a few statistics about the bus.

Implementation in the user program:
// ---------------------------------------

// physical device address

// ---------------------------------------

Raw_Dev=1.1.60

// evaluation

// ---------------------------------------

// max time between two telegrams from one device since recording

Raw_MaxTime=0u16

// min time between two telegrams from one device since recording

Raw_MinTime=65365u16

// last determined time

Raw_CalcTime=0u16

// Average value over all telegrams of the same equipment

Raw_AvgTime=0u64

// errortime: When an error is to be recognized

Raw_TimeWatch=120u64*60000u64

// arguments from readrawknx:

Raw_Kontroll=0

Raw_Sender=0.0.0

Raw_GA=0u16

Raw_IsGa=AUS

Raw_RoutingCnt=0

Raw_Len=0

Raw_Data=$$

// ---------------------------------------

// assistant variables

Raw_AvgTrigger=0u64

Raw_Error=AUS

Raw_AvgTimeSum=0u64

// timescale: 1000 accuracy in seconds

// 60000 accuracy in minutes

Raw_TimeScale=1000u64

Raw_Time=Raw_TimeWatch

// Respond only to group messages on the EibPC and only if the sender address is correct

if event(readrawknx(Raw_Kontroll,Raw_Sender,Raw_GA,Raw_IsGa,Raw_RoutingCnt,Raw_Len,Raw_Data))
and Raw_Sender==Raw_Dev and Raw_IsGa then {

// change time to seconds and calculate min and max values

// evaluate Raw_Time

Raw_CalcTime=convert((Raw_TimeWatch-Raw_Time)/Raw_TimeScale,0u16);

if Raw_MaxTime<Raw_CalcTime then Raw_MaxTime=Raw_CalcTime endif;

if Raw_MinTime>Raw_CalcTime then Raw_MinTime=Raw_CalcTime endif;

// avarage=Raw_AvgTime/Raw_Trigger

Raw_AvgTimeSum=Raw_AvgTimeSum+convert(Raw_CalcTime,0u64);

Raw_AvgTrigger=Raw_AvgTrigger+1u64;

Raw_AvgTime=Raw_AvgTimeSum/Raw_AvgTrigger;

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 182 of 247

// expect a telegram every Raw_TimeWatch: then delay will retrigger

// otherwise error condition!

if delayc(change(Raw_AvgTrigger),Raw_TimeWatch,Raw_Time) then {

Raw_Error=EIN

} endif

Note:

The function event can used with readrawknx function (see example).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 183 of 247

GetAddress

Gaimage

Getganame

Definition

● Function getaddress(Groupaddress)

Arguments

● Groupaddress any imported (or manually given) Group Address

Effect

● The function is returning the unsigned 16-Bit Value of the groupaddress as its address
number.

Return value

● u16

At 12:00 AM the Group Address 1/1/27 shall be read and at 12:30 a 10% value shall be written

to the same group address

[EibPC]

a=getaddress("Dimmer-1/1/27")

if htime(12,00,00) then read(address(a)) endif

if htime(12,30,00) then write(address(a),16) endif

Note:
Normally you don't need this function, you could directly code read("Dimmer-1/1/27") etc. This function is provided for
enhanced coding styles.

Definition

● Function gaimage(Number)

Arguments

● Number of data type u16

Effect

● The function is returning the actual image of a group address stored in the EibPC. The
group address of the telegram is given with the variable named Number. The binary data of
the telegram is converted into a string (see convert) and given as the return value of this
function.

Return value

● c1400

Note:
The Number is calculated as address= [main group] x 2048+[middle group] x 256 + [subgroup]. As an example with
[main group]=5, [middle group]=3 and [subgroup]=11 the telegramm imaga of '5/3/11' is addressed. You have to cal-
culate this number by yourself or you can use the function getaddress.

Definition

● Function getganame(Groupaddress, Coding)

Arguments

● Groupaddress any imported Group Address

● Coding with the usual designation, e.g. $ UTF-8 $ c14 as c14 string, is used to directly
convert the GA to any system encoding.

Effect

● The function returns the name of the group address in the EibPC format when this group
address has been imported into the application program (ESF import)

Return value

● c1400

The name of a group address should be stored as a text in the standard Windows encoding

(iso8859-15) in a variable.

// MyVar=$"VentilateWorking-0/0/2"$

MyVar=getganame("VentilateWorking-0/0/2",$utf-8$c14)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 184 of 247

Network functions

UDP

Receive UDP datagrams

The ports via which the EibPC communicates can be changed via PROJECT SETTINGS → CONNECTION.

The EibPC sends the data of a UDP transfer always from its port 4807, whereas the receiver's port
can be chosen arbitrarily.

The EibPC receives the data of a UDP transfer always from its port 4806. Therefore, the transmitter
must use this port as destination. The port the transmitter send its data from can be determined by
the EibPC.

Definition

● Function readudp(port, ip, arg 1[, arg2, ... argN])

Arguments

● Argument port of data type u16 (the transmitter's outbound port; the transmitter's destina-
tion port must always be port 4806).

● Argument ip of data type u32 (the transmitter's address in the usual notation, e.g.
192.168.22.100)

● arg2 to argN of arbitrary data type

Effect

● Received “user data” start with the 3rd argument. Their number and data type is arbitrary.

● If a UDP telegram is sent to the EibPC, every function readudp updates its respective ar-
guments. The arguments of the readudp function are filled with data up to the length of its
arguments. In any case, the variables port and ip of the function readudp are overwritten
with the current data of the transmitter every time a UDP telegram is received.

● The IP address (variable ip) is defined in the usual notation (xxx.xxx.xxx.xxx with xxx:
number between 0 and 255).

● If your LAN device can be addressed by a name and DNS, the function resolve can re-
place an explicit IP address.

● To detect incoming telegrams, the function event can be applied to readudp. This will be-
come necessary if telegrams with identical content have to be evaluated (see below).

● The EibPC always receives from port 4806. This port cannot be changed and must be
taken into consideration by a UDP transmitter.

Return value

● none

Example: Write data received from UDP telegrams to the KNX bus

A UDP telegram is sent by the transmitter 122.32.22.1 to the EibPC via the transmitter's port

2243u16. The user data consist of three u08 values and shall be sent to the group addresses

3/4/0,3/4/1,3/4/2 whenever a UDP telegram arrives.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 185 of 247

Send UDP datagrams

Implementation in the user program:
Port=0u16

IP=0u32

Data1=0;Data2=0;Data3=0

telegram=event(readudp(Port, IP,Data1,Data2,Data3))

if (Port==2243u16) and (IP==122.32.22.1) and telegram then \\

write('3/4/0'u08,Data1); \\

write('3/4/1'u08,Data2); \\

write('3/4/2'u08,Data3) \\

endif

Note:

The function event, or rather the link with telegram in the if statement ensures that the then branch is
called in any case, thus sending the data to the bus, even if identical UDP telegrams are sent multi -
ple times.

Definition

● Function sendudp(port, ip, arg 1[, arg2, ... argN])

Arguments

● Argument port of data type u16

● Argument ip of data type u32 (the receiver's address in the usual notation, e.g.
192.168.22.100)

● arg2 to argN of arbitrary data type

Effect

● Argument port is the destination port of the data sent by the EibPC.

● The EibPC itself sends the data from its port 4807.

● Transmitted “user data” start with the 3rd argument. Their number and data type is arbi-
trary.

● The IP address (variable ip) is defined in the usual notation (xxx.xxx.xxx.xxx with xxx:
number between 0 and 255).

● If your LAN device can be addressed by a name and DNS, the function resolve can re-
place an explicit IP address.

● If arg2 to argN are data type c1400, the terminating zero of the string will be transferred,
too.

Return value

● none

Example: Send UDP telegrams

Every 2 minutes, a UDP telegram shall be sent by the EibPC to the port 5555u16 of the

receiver www.enertex.de. The user data to be transmitted shall comprise a 32-bit counter for

the telegrams and the character string “I'm still alive”.

Implementation in the user program:
Count=0u32

if cycle(2,00) then sendudp(5555u16,resolve($www.enertex.de$, Count,$I'm still alive$); \\

 Count=Count+1u32 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 186 of 247

Sendudparray Definition

● Function sendudparray(port, ip, arg,Nr)

Arguments

● Argument port of data type u16

● Argument ip of data type u32 (the receiver's address in the usual notation, e.g.
192.168.22.100)

● arg of data type c1400

● Nr of data type u16

Effect

● Argument port is the destination port of the data sent by the EibPC.

● Received “user data” start with the 3rd argument. Their number and data type is arbitrary.

● The IP address (variable ip) is defined in the usual notation (xxx.xxx.xxx.xxx with xxx:
number between 0 and 255).

● If your LAN device can be addressed by a name and DNS, the function resolve can re-
place an explicit IP address.

● Sends Nr Bytes of arg via UDP Protocol.

Return value

● none

Example: Send UDP telegrams

Every 2 minutes, a UDP telegram shall be sent by the EibPC to the port 5555u16 of the

receiver www.enertex.de. The user data to be transmitted is the first 5 characters of the string

“I'm still alive”.

Implementation in the user program:
Count=0u32

if cycle(2,00) then sendudparray(5555u16,resolve($www.enertex.de$),$I'm still alive$,5u16) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 187 of 247

TCP server and client

Server and client

TCP ports

Connecttcp

Closetcp

The EibPC functions both as a server and as a client. Every 100 ms, it responds to a new connection
request. If the EibPC is connected, it answer the requests with the cycle time of the processing cy -
cle.

The TCP/IP server of the EibPC receives connection requests always via its port 4809.

Definition

● Function connecttcp(port, ip)

Arguments

● Argument port of data type u16

● Argument ip of data type u32 (the destination's address in the usual notation, e.g.
192.168.22.100)

Effect

● The EibPC functions as a client. It establishes a connection to the given destination (de-
fined by ip address and port).

● The function returns its processing status:
- successful = 0
- in progress = 1
- error= 2
- error due to an already existing connection = 3
- error caused by too many active connections = 4
- connection automatically closed due to a timeout (not responding) = 6
- connection closed by user with closetcp= 7
- TCP counterpart closed the connection = 8
- Initial value = 9

● After 30 seconds of inactivity of an existing connection, the EibPC disconnects automati-
cally

Return value

● u08 (The return value changes asynchronously to the main development loop).

Definition

● Function closetcp(port, ip)

Arguments

● Argument port of data type u16

● Argument ip of data type u32 (the destination's address in the usual notation, e.g.
192.168.22.100)

Effect

● The EibPC closes the connection to the given destination (defined by ip address and port).

● The function returns its processing status:
- successful = 0,
- in progress = 1 and
- error = 2
- error, the connection does not exist = 5

Return value

● u08

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 188 of 247

Readtcp

Sendtcp

Definition

● Function readtcp(port, ip, arg 1[, arg2, ... argN])

Arguments

● Argument port of data type u16 (the transmitter's outbound port)

● Argument ip of data type u32 (the transmitter's address in the usual notation, e.g.
192.168.22.100)

● arg2 to argN of arbitrary data type

Effect

● Received “user data” start with the 3rd argument. Their number and data type is arbitrary.

● If a TCP/IP telegram is sent to the EibPC, every function readtcp updates its respective ar-
guments. The arguments of the readtcp function are filled with data up to the length of its
arguments. In any case, the variables port and ip of the function readtcp are overwritten
with the current data of the transmitter every time a TCP/IP telegram is received.

● The IP address (variable ip) is defined in the usual notation (xxx.xxx.xxx.xxx with xxx:
number between 0 and 255).

● If your LAN device can be addressed by a name and DNS, the function resolve can re-
place an explicit IP address.

● To detect incoming telegrams, the function event can be applied to readtcp. This will be-
come necessary if telegrams with identical content have to be evaluated (see below).

Return value

● none

Definition

● Function sendtcp(port, ip, arg 1[, arg2, ... argN])

Arguments

● Argument port of data type u16

● Argument ip of data type u32 (the receiver's address in the usual notation, e.g.
192.168.22.100)

● arg2 to argN of arbitrary data type

Effect

● Argument port is the destination port of the data sent by the EibPC.

● The “user data” starts with the 3rd argument. Their number and data type is arbitrary.

● The IP address (variable ip) is defined in the usual notation (xxx.xxx.xxx.xxx with xxx:
number between 0 and 255).

● If your LAN device can be addressed by a name and DNS, the function resolve can re-
place an explicit IP address.

● If arg2 to argN are data type c1400, the terminating zero of the string will be transferred,
too.

Return value

● none

Example: Send TCP telegrams

Every 2 minutes, a TCP telegram shall be sent by the EibPC to the port 5555u16 of the

receiver www.enertex.de. The user data to be transmitted is the string “I'm still alive”.

The socket is already open and ready to send (IP and Port open).

Implementation in the user program:
Count=0u32

if cycle(2,00) then sendtcp(5555u16,resolve($www.enertex.de$),$I'm still alive$) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 189 of 247

Sendtcparray

Definition

● Function sendtcparray(port, ip, arg,Nr)

Arguments

● Argument port of data type u16

● Argument ip of data type u32 (the receiver's address in the usual notation, e.g.
192.168.22.100)

● arg of data type c1400

● Nr of data type u16

Effect

● Argument port is the destination port of the data sent by the EibPC.

● Received “user data” start with the 3rd argument. Their number and data type is arbitrary.

● The IP address (variable ip) is defined in the usual notation (xxx.xxx.xxx.xxx with xxx:
number between 0 and 255).

● If your LAN device can be addressed by a name and DNS, the function resolve can re-
place an explicit IP address.

● Sends Nr Bytes of arg via TCP/IP Protocol.

Return value

● none

Example: Send TCP telegrams

Every 2 minutes, a TCP telegram shall be sent by the EibPC to the port 5555u16 of the

receiver www.enertex.de. The user data to be transmitted is the first 5 Bytes of the string “I'm

still alive”.

The socket is already open and ready to send (IP and port).

Implementation in the user program:
Count=0u32

if cycle(2,00) then sendtcparray(5555u16,resolve($www.enertex.de$),$I'm still alive$,5u16) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 190 of 247

Ping Definition

● Function ping(IP)

Arguments

● The IP address (variable ip) is defined in the usual notation (xxx.xxx.xxx.xxx with xxx:
number between 0 and 255).

Effect

● Execution of the ping command

● The function returns its processing status:
- successful = 0,
- in progress = 1 and
- error = 2

Return value

● u08

(The return value is asynchronous to the main development loop)

Example ping

The address www.enertex.de should be pinged shortly after systemstart.

IP=0u32

a=3

If after(systemstart(),10u64) then IP=resolve($www.enertex.de$) endif

If after(systemstart(),10u64) then a=ping(IP) endif

if a==0 then write('2/2/2'c14,$found$c14) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 191 of 247

Resolve Hostname

Email

Plain-text email

Definition

● resolve(hostname)

Arguments

● 1 argument hostname of data type c1400

Effect

● The function determines the IP address of the given hostname.

● If an error occurs, 0u32 is returned.

Return value

● Data type u32

(The return value changes asynchronously to the main development loop)

Example resolve

The hostname enertex.de shall be resolved.

Implementation in the user program:
hostname=$www.enertex.de$

IP=resolve(hostname)

Before the function sendmail can be used, the basic e-mail configuration has to be done (see p. 22).

Definition

● sendmail(destination, subject, message)

Arguments

● 3 arguments of data type c1400

Effect

● A message with subject is sent to the destination (character string).

● All character strings are restricted to a maximum length of 1400 characters.

● A line break can be achieved by using the two characters '\n' in the string,

● Return value: 0 = e-mail successfully sent

 1 = in progress

 2 = error

● Return value Firmware > 4.113:
0 = e-mail successfully sent
1 = in progress
2 = No system memory
3 = Invalid server address
4 = Authentication failed
5 = TLS failed
6 = Send failed, e.g, PLAIN oder STARTTLS not supported
7 = Unexpected server response
8 = Timeout after 5 s

Return value

● Data type u08

(The return value changes asynchronously to the main development loop)

Example: sendmail

Every Monday at 08:00, an e-mail shall be sent to eibpc@enertex.de.

The subject is “EibPC“ and the message contains 2 lines “I'm still alive“ and “Here we go!”

Implementation in the user program:

email=$eibpc@enertex.de$

subject=$EibPC$

message=$I'm still alive\nHere we go$

if wtime(08,00,00,MONTAG) then sendmail(email, subject, message) endif

Note:

If you want to send html - formatted mails, use the sendhtmlmail Function (page 192)

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 192 of 247

HTML mail Before the function sendhtmlmail can be used, the basic e-mail configuration has to be done (see p.
22).

Definition

● sendhtmlmail(destination, subject, message)

Arguments

● 3 arguments of data type c1400

Effect

● A message with subject is sent to the destination (character string).

● All character strings are restricted to a maximum length of 1400 characters.

● A line break can be achieved by using the two characters '\n' in the string,

● Return value: 0 = e-mail successfully sent

 1 = in progress

 2 = error

● Return value Firmware > 4.113:
0 = e-mail successfully sent
1 = in progress
2 = No system memory
3 = Invalid server address
4 = Authentication failed
5 = TLS failed
6 = Send failed, e.g, PLAIN oder STARTTLS not supported
7 = Unexpected server response
8 = Timeout after 5 s

Return value

● Data type u08

Example: sendhtmlmail

Every Monday at 08:00, an e-mail shall be sent to eibpc@enertex.de.

The subject is “EibPC“ and the message contains 2 lines “Hello World,“ (in bold) and “Here we

go!”

Implementation in the user program:

email=$eibpc@enertex.de$

subject=$EibPC$

message=$<html><head><meta name="qrichtext" content="1" /></head><body style="font-size:11pt;font-
family:Sans Serif"> <p>Hello World, </p> <p>a message from the
EibPC</p> </body></html>$

if wtime(08,00,00,MONTAG) then sendhtmlmail(email, subject, message) endif

Note:

If you don't want to send html - formatted mails, use the sendmail Function (page 191).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 193 of 247

VPN Server

Startvpn

Stopvpn

Getvpnusers

Definition

● startvpn()

Arguments

● none

Effect

● Starts the VPN Service on the EibPC. The VPN must be configured with EibStudio before.

● After a reboot the VPN is stopped per default. The VPN should therefore started with an if
systemstart() construction (see example)

● All in the past enabled users (to open a user's VPN access use openvpnuser) are immedi-
ately opened after this function call.

● If a new user progamm is downloaded to an EibPC, the VPN service remains open. An
recommended additional startvpn()-call does not make an interruption on the running ser-
vice. Only if the system is rebooted the Service will be stoppped.

● With the Info-Button in EibStudio can be read whether the VPN service is running and
which users are enabled.

Return value

● none

Definition

● Function stopvpn()

Arguments

● none

Effect

● Stops the VPN Service on the EibPC.

● After a reboot the VPN is stopped per default.

● All in the past enabled users (to open a user's VPN access use openvpnuser) are immedi-
ately closeed after this function call.

● With the Info-Button in EibStudio can be read whether the VPN service is running and
which users are enabled.

Return value

● none

Definition

● Function getvpnusers()

Arguments

● none

Effect

● Get a list of active VPN user

Return value

● none

Hint: The Macro Library EnertexVPN.lib implements functions to simplify VPN usage.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 194 of 247

Openvpnuser

Closevpnuser

Definition

● Function openvpnuser(username)

Arguments

● username is a c1400 Type ($$)

Effect

● Opens a user's VPN access. The access becomes active only, if a startvpn() is already
executed .

● After a reboot the VPN access itself remains enabled, but the VPN service has to be
started with startvpn() separately.

● With the Info-Button in EibStudio can be read whether the VPN service is running and
which users are enabled.

Return value

● none

Definition

● Function closevpnuser(username)

Arguments

● username is a c1400 Type ($$)

Effect

● Closes a user's VPN access. The access becomes inactive independently whether the
VPN Service is running or not.

● After a reboot the VPN is still open, but the VPN service has to be started with startvpn().

● With the Info-Button in EibStudio can be read whether the VPN service is running and
which users are enabled.

Return value

● none

Remark

closevpnuser does not effect an already open VPN user access. The access will denied, if the user
is logged out and will try to re-login or the VPN Service is completely stopped and started again.

Example:

The access of User1 should be opened, once there is an ON Signal (1b01) sent at groupaddress 1/1/1. If
there is an OFF signal (0b1) the user shall be closed. A second user shall be opened with address 1/1/2.

The VPN Service should be started 500ms after systemstart and closed with an ON, if 1/1/3 is receiving a
signal.

[EibPC]

if after(systemstart(),500u64) then startvpn() endif

if "OpenUser1-1/1/1"==ON then openvpnuser($User1$) else closevpnuser($User1$) endif

if "OpenUser2-1/1/2"==ON then openvpnuser($User2$) else closevpnuser($User2$) endif

if "StopVPN-1/1/3"==ON then stopvpn() endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 195 of 247

FTP

Ftpconfig

Sendftp

FTP transfer to any data logging.

The FTP transfer writes files to a remote FTP server, the maximum file size is 64 kB.

To this end, various handles can be created, which in turn create buffered queue by up to 64 kB
large file on the server. The files are via timeout earlier (and then fewer bytes if necessary) written or
initiated by flushftp () by the user.

The files are named automatically by the firmware by date and time.

Strings can be written as input. The file is in ASCII format and therefore the function sendftp() P. 195
is written in the queue.

In this case an LF CR (newline suitable for Windows) is inserted at the end of the data transmission
of sendftp. A call to sendftp can pass more than one substring, but no more than 1400 bytes assume
total. It can not handle more than four are defined. This is not to be confused with the periodic out-
sourcing of the KNX telegramms.

Definition

● Function ftpconfig(server,user,password,path,timeout)

Arguments

● Argument server of data type c1400

● Argument user of data type c1400

● Argument password of data type c1400

● Argument path of data type c1400

● Argument timeout of data type u32 in seconds

Effect

● Configuration of an FTP server

● Updating the dependencies for value change or during the possible invocation of the
startup function.

● The FTP transfer writes files to a remote FTP server, the maximum file size is 64 kB. To
this end, various handles can be created, which in turn create buffered queue by up to 64
kB large file on the server. The files are via timeout earlier (and then fewer bytes if neces -
sary) written or initiated by flushftp () by the user. The files are automatically named by the
firmware by date and time.

● More than four handles cannot be defined.

Return value

● In case of failure = 0

● On sucess a handle number 1 to 4 will return

Definition

● Function sendftp(handle,data1,[data2],[...])

Arguments

● Argument handle of data type u08

● Argument data[x] of any data type, a maximum of 1400 bytes.

Effect

● Any data written to the queue of the handle.

● The assignment is done asynchronously.

Return value

● if it is successful = 0

● In the case of failure= 1

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 196 of 247

Ftpstate

Ftptimeout

Ftpbuffer

Flushftp

Definition

● Function ftpstate(handle)

Arguments

● Argument handle of data type u08

Effect

● Returns information about the status of the FTP configuration.

Return value

● u08

● Configures / error-free = 0

● Last transmission error-free = 1

● Server not available = 2

● Password/User not allowed = 3

● Error Directory does not exist and cannot be created = 4

● Queue overflow, when previously error = 5

● Don't handle defined = 6

Definition

● Function ftptimeout(handle)

Arguments

● Argument handle of data type u08

Effect

● Returns the elapsed time in seconds back since the last transfer

Return value

● u32

Definition

● Function ftpbuffer(handle)

Arguments

● Argument handle of data type u08

Effect

● Gives the fill level of the queue of transfers back.

Datentyp Ergebnis (Rückgabe)

● u16

Definition

● Function flushftp(handle)

Arguments

● Argument handle of data type u08

Effect

● Write data manually on the FTP server

Return value

● Success = 0

● Server not available = 1

● Error while uploading the file = 2

● Password/User not allowed = 3

● Error Directory does not exist and cannot be created = 4

● Transmission is just performed (asynchronous update) = 5

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 197 of 247

HTTP-Requests Definition

• httprequest(Type, URL, Query, Header, Body, TLS, Timeout, Priority, HTTP-Status, Reply-
Header, Reply-Body)

Arguments

• Type (u08)
GET=0u08, POST=1u08, PUT=2u08, DELETE=3u08, PATCH=4u08

• URL (c) at most 256 characters
Format:
http[s]://[user:password@]enertex.de[:Port]/complete/path

• Query (c)

• Header (c)

• Body (c)

• TLS (b01)
TLS_VERIFY_CERT=1b01, TLS_IGNORE_CERT=0b01

• Timeout (u08)

• Priority (u08)

• HTTP-Status (u16)
Returns HTTP after execution (e.g., 200 on success)

• Reply-Header (c)
Returns Header of server reply

• Reply-Body (c)
Returns Body of server reply

Effect

• Send a HTTP request to the specified URL

• Use https instead of http in URL for encryption

• If TLS has the value TLS_IGNORE_CERT the server certificate is ignored

• If authentication is needed, pass username and password as part of URL

• Specify the remote port after the host. If omitted, the default ports 80/443 are used for
http/https

• Query arguments must be separated by & and URL-encoded, e.g.,
arg1=wert1&arg2=wert2. They are added to the URL after ? internally

• The Body is transmitted without modification. Set encoding appropriately in the Header
(Content-Type) if required.

• Header must be a list separated by LF, e.g.,
$Content-Type: application/json$+LF+$Accept: text/plain$

Default: User-Agent: Enertex EibPC2

• After Timeout seconds the request is canceled. Passing 0 uses the default timeout of 10
seconds.

• HTTP requests are executed sequentially. By setting a Priority urgent HTTP requests can
be executed before others, e.g. turn on an IoT device when a telegram is sent has a higher
priority than getting weather information. The least urgent priority is 0, the most urgent is
255.

• At most 10 HTTP requests are processed per second (Firmware < 4.105: 2 requests).

• At most 5 HTTP redirects are allowed, if the server answers with 3xx (Firmware < 4.008:
no redirection at all).

• With Firmware > 4.110 redirects can be disabled: add 128 to parameter Type, e.g., GET

without redirect: 128, POST without redirect 129.

• The function asynchronously returns values into its arguments HTTP-Status, Reply
Header, Reply Body. Always use unique return variables, never shared variables, e.g.
$$!

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 198 of 247

Return value

• 0u08: Success

• 1u08: Enqueued

• 2u08: Invalid arguments

• 3u08: Error during execution

• 4u08: Invalid URL or no connection to host

• 5u08: forbidded, e.g. authentication required nötig

• 6u08: server certificate invalid and option TLS_IGNORE_CERT not used

• 7u08: no reply during Timeout

• 8u08: too many requests pending (limit: 1000)

• 9u08: too many HTTP redirects

• The return values are updated asynchronously

Example

Daily check if a firmware update is available

// Arguments

timeout=5

priority=128

// Return values

status=255

httpstatus=0u16

header=$$

body=$$c65534

if systemstart() or htime(0,0,0) then \\

status=httprequest(GET, $http://enertex.de/downloads/1159/VersionsLog.json$,\\

$$,$$,$$,TLS_VERIFY_CERT,timeout,priority,httpstatus,header,body) endif

FirmwareV2=$$

if status == 0 then FirmwareV2=parsejson(body, $/FirmwareV2$, $$c5) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 199 of 247

Modbus TCP

Byte-Order

Word-Order

Master

The EibPC² acts as Modbus TCP Master and Slave, i.e., it can read/write resources of other devices
and provide its internal objects to be read by others.

Modbus resources are

• MB_COIL: 1 Bit, Addresses 1-9999

• MB_DISCRETE_INPUT: 1 Bit, read only, Addresses 10001-19999

• MB_INPUT_REGISTER: 16 Bit, read only, Addresses 30001-39999

• MB_HOLDING_REGISTER: 16 Bit, Addresses 40001-49999

A 0-based addressing scheme and an explicit selection of the resource type is used. To access the
first Holding Register, use MB_HOLDING_REGISTER and index 0.

Modbus resources are 1 Bit or 16 Bit. The functions to read, write, and the Slave definitions map
them to EibPC objects. Objects of type b01 are directly mapped to MB_DISCRETE_INPUT or
MB_COIL, 16 Bit wide datatypes (e.g., u16) are directly mapped to MB_INPUT_REGISTER or
MB_HOLDING_REGISTER.

When accessing multi-byte values, the byte order (Endianess) is important, as it defines the interpre -
tation. Either the most-significant byte (Big Endian) or the least significant byte (Little Endian) is at
the lowest address.

A value of 0x1234 (decimal 4660) has two bytes Bytes 0x12 and 0x34. If the value is stored as
0x3412 (Little Endian) internally by a given device, the argument Byte-Order set to
LITTLE_ENDIAN tells the EibPC to change its interpretation accordingly.

If the EibPC datatype is larger than the Modbus resource, neighboring resources are addressed.
Separate single 1 Bit register can be read as a single u08. The order of separate data words (scalar
values, here separate bits or 16-bit register values) is given by the argument Word-Order. A resource
with a lower index has a higher significance for the result when using BIG_ENDIAN.

The following Bits 1, 0, 0, 1, 1, 0, 0, 0 starting with index 7 are interpreted as binary value
10011000 or hex 0x98 or decimal 152 when using BIG_ENDIAN, and interpreted as binary
value 00011001 or 0x19 or decimal 25 when using LITTLE_ENDIAN.

Similar to FTP functions (p. 195) a Modbus Master handle has to be created first. The handle stored
the connection information used by the read and write functions. If the connection is interrupted, it is
automatically reestablished.

Definition

• modbusmaster(Host, Port, Timeout, Slave-Address)

Arguments

• Host (c)

• Port (u16)

• Timeout (u32)

• Slave-Address (u08)

Effect

• Return a Modbus TCP handle to be used by readmodbus, writemodbus

• Host is a IP-Address string oder a hostname resolved on program start.

• The Modbus default Port is 502u16.

• Timeout in seconds defines how long to wait on a single resource.

• At most 10 read or write requests are processed per second (Firmware < 4.106: 2 re-
quests).

• Most devices use a Slave-Address of 1u08 or 255u08.

Return value (u08)

• 0u08 Error

• Modbus Master handle to be passed to readmodbus and writemodbus

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 200 of 247

Read resource

Definition

• readmodbus(Master-Handle, Type, Index, Return-Object, Byte-Order, Word-Order)

Arguments

• Master-Handle (u08)

• Type (u08)

• Index (u16)

• Return-Object (b01, b02, b04, u08, s08, u16, s16, f16, u24, s24, u32, s32, f32, u64, s64)

• Byte-Order (u08)

• Word-Order (u08)

Effect

• Read the current value from a Modbus resource of Type, starting at Index, and write the
result into Return-Object

• Type must be one of MB_DISCRETE_INPUT, MB_COIL, MB_INPUT_REGISTER,
MB_HOLDING_REGISTER

• The Bit or Byte order when mapping the resource to Return-Object is defined by Byte-Or-
der (u08) and Word-Order (u08)

• The function asynchronously returns values into its arguments

Return value (u08)

• 0u08 Success

• 1u08 Executing

• 2u08 Error

Example

Every 10 seconds an energy storage shall be queried for effective power and
charge state, and respective variables must be updated. Slave address (unit ID)
is 255, the port 502 (default).

Figure 15: Modbus-Register of energy storage (source: Varta)

mm1=modbusmaster($192.168.1.100$, 502u16, 10u32, 255)

activePower=0s16

stateCharged=0u16

status=0

if cycle(0,10) then {

 status=readmodbus(mm1, MB_INPUT_REGISTER, 1066u16, activePower, BIG_ENDIAN, BIG_ENDIAN);

 status=readmodbus(mm1, MB_INPUT_REGISTER, 1068u16, stateCharged, BIG_ENDIAN, BIG_ENDIAN);

} endif

if status == 2 then {

… // Error

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 201 of 247

Write resource Definition

• writemodbus(Master-Handle, Type, Index, Source-Object, Byte-Order, Word-Order)

Arguments

• Master-Handle (u08)

• Type (u08)

• Index (u16)

• Source-Object (b01, b02, b04, u08, s08, u16, s16, f16, u24, s24, u32, s32, f32, u64, s64)

• Byte-Order (u08)

• Word-Order (u08)

Effect

• Write the current value of Source-Object into the Modbus resource of Type, starting from
Index.

• Type must be one of MB_COIL, MB_HOLDING_REGISTER

• The Bit or Byte order when mapping the value of Source-Object to the Modbus resource is
defined by Byte-Order (u08) and Word-Order (u08)

• The function asynchronously returns values into its arguments

Return value (u08)

• 0u08 Success

• 1u08 Executing

• 2u08 Error

Example

Change the scaling of the effective power for the energy storage above.

Figure 16: Modbus-Register of energy storage (Quelle: Varta)

mm1=modbusmaster($192.168.1.100$, 502u16, 10u32, 255)

status=0

if cycle(0,10) then {

 status=writemodbus(mm1, MB_HOLDING_REGISTER, 2066u16, -3s16, BIG_ENDIAN, BIG_ENDIAN);

} endif

if status == 2 then {

… // Error

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 202 of 247

Slave Acting as Modbus TCP Slave the EibPC² other Modbus TCP Master can read the current status ob
internal objects. These values are updated every 5 seconds.

The number of simultaneous Modbus TCP Master connections is limited to 4.

The TCP port can be changed. The default Modbus TCP port is 502. (p. 22)

All Modbus master devices have access the same resources.

Definition

• modbusslave(Type, Index, Source-Object, Byte-Order, Word-Order)

Arguments

• Type (u08)

• Index (u16)

• Source-Object (b01, b02, b04, u08, s08, u16, s16, f16, u24, s24, u32, s32, f32, u64, s64)

• Byte-Order (u08)

• Word-Order (u08)

Effect

• Maps the Source-Object to Modbus resources of Type at Index to be read by other Mod-
bus TCP Master devices

• Type must be one of MB_DISCRETE_INPUT, MB_COIL, MB_INPUT_REGISTER,
MB_HOLDING_REGISTER

• The Bit or Byte order when mapping the Source-Object is defined by Byte-Order (u08) and
Word-Order (u08)

• The function asynchronously returns values into its arguments

Return value (u08)

• 0u08 Modbus resource correctly created

• 1u08 Creating modbus resource

• 2u08 Error

Example

The EibPC shall be queried by a Modbus TCP master. Register address 0 maps a 1-
Bit-Value and register addresses 100/101 (two sequential registers, each 16-Bit)
map a 32-Bit value.

flag=1b01

val=0x12345678u32

modbusslave(MB_COIL, 0u16, flag, BIG_ENDIAN, BIG_ENDIAN);

modbusslave(MB_INPUT_REGISTER, 100u16, val, BIG_ENDIAN, BIG_ENDIAN);

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 203 of 247

MQTT

MQTT Broker

The EibPC² with Option NP has support for MQTT for simple data exchange with other devices. The
integrated broker accepts and distributes messages.

Configure a MQTT client handle to process messages sent by other clients, e.g., to forward them as
KNX group adddress telegram. This is also required if the internal MQTT broker is used.

Definition

• startmqttbroker(Port, TLS, Username, Password)

Arguments

• Port (u16) default port 1883u16 unencrypted, 8883 with TLS

• TLS (b01) enable encryption

• Username (c) Username for authentication

• Password (c) Password for authentication

Effect

• Start the integrated MQTT Broker den integrierten MQTT-Broker.

• If TLS is enabled (=1b01), the communication is encrypted with TLS. The webserver-cer-
tificate is used as server certificate.

• If Username and/or Password are empty strings, authentication is disabled.

• Up to 100 concurrent Clients are supported.

• If the broker is already running, it is only restarted if Port or TLS change. Otherwise the
user configuration is reloaded.

Return value (u08)

• 0u08: the MQTT Broker is started and running

• 1u08: starting

• 2u08: stopped

• 3u08: start failed, e.g., no server certificate but TLS is enabled

• 4u08: configuration error

• 5u08: configuration reloaded

• The return value is updated asynchronously.

Example

Start the MQTT broker when the EibPC starts. TLS is disabled, but clients must
authenticate with username and password (eibpc:secret).

uBrokerStatus=255

if systemstart() then uBrokerStatus=startmqttbroker(1883u16, 0b01, $eibpc$,
$secret$) endif

Definition

• stopmqttbroker()

Arguments

• none

Effect

• Stop the running MQTT broker

Return value (u08)

• none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 204 of 247

MQTT-Client Definition

• mqttclient(Host, Port, TLS, Username, Password, ValidateServerCert, CACert, ClientCert,
ClientKey)

Arguments

• Host (c) Hostname or IP address as string

• Port (u16) default port 1883u16 unencrypted, 8883 with TLS

• TLS (b01) enable encryptiont

• Username (c) Username or empty string

• Password (c) Username or empty string

• ValidateServerCert (b01) TLS_VERIFY_CERT or TLS_IGNORE_CERT

• CACert (c) Root certificate to validate Server certificate, PEM format

• ClientCert (c) Client certificate, PEM format

• ClientKey (c) Unencrypted private key for Client certificate, PEM format

Effect

• Creates an MQTT client connection handle. Up to 4 handles are supported.

• Connection is opened automatically. If the connection fails, the EibPC tries again after 60
seconds.

• If Username or Password is empty, authentication is disabled.

• If ValidateServerCert is TLS_VERIFY_CERT=1b01, the server address is verified. Only
active with TLS. Expired or self-signed certificates are not accepted with
TLS_VERIFY_CERT=0b01.

• If CACert is empty, the integrated certificates are used to validate the server, if TLS is en-
abled.

• If ClientCert and ClientKey are not empty, the client presents the certificate to authenticate
the user to the server of TLS is enabled.

• MQTT client ID is fixed to "eibpc-<serial number>-<handle>".

Return value (u08)

• 0u08 Error

• MQTT handle (u08 > 0u08) for the functions subscribemqtt, unsubscribemqtt, publishmqtt.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 205 of 247

Definition

• subscribemqtt(Handle, Topic, QualityOfService, Result, [ResultTopic])

Arguments

• Handle (u08) Connection handle from mqttclient

• Topic (c)

• QualityOfService (u08) valid values: 0u08 (QoS 0), 1u08 (QoS 1), 2u08 (QoS 2)

• Result (Variable of type b01, b02, b04, u08, s08, u16, s16, f16, u24, u32, s32, f32, u64,
s64, cXXXXX)

• ResultTopic (c) optional

Effect

• Subscribes an MQTT topic.

• The topic can contain wildcards:

• sensors/+/temp for a single level

• sensors/# for all topics of all (sub-)levels. # must be the last character.

• The connection to Broker is opened if required.

• QualityOfService steuert die Zuverlässigkeit der Zustellung:

• QoS 0: simple delivery

• QoS 1: guaranteed delivery

• QoS 2: exactly-once delivery

• Every message changes the Result object if the data differs.

• If Result is changed, ResultTopic contains the topic of the message if provided. If the sub-
scription topic contains wildcards, it can be used to decide how to parse the message.

• The message is decoded according to the type of Result. Many devices however send
string messages. Result must also be a string. It can then be processed further, e.g, with
parsejson or convert.

Return value (u08)

• 0u08 Success

• 1u08 Error

• 2u08 Subscription exists

• 3u08 Max. number of subscriptions reached

Example

The integrated MQTT-Broker is enabled. Changes of an MQTT topic shall be mapped
to a group address.

uMqttHandleEibPC = mqttclient($localhost$, 1883u16, AUS, $eibpc$, $secret$,
TLS_IGNORE_CERT, $$,$$,$$)

zStatus=$$c3

if uMqttHandleEibPC > 0 then {

iSubscriptionStatus=subscribemqtt(uMqttHandleEibPC, $stat/tv/POWER$, 0,
zStatus);

} endif

if zStatus == OFF then write("Status-13/1/9", 0b01) endif

if zStatus == ON then write("Status-13/1/9", 1b01) endif

Definition

• unsubscribemqtt(Handle, Topic, Result)

Arguments

• Handle (u08) Connection handle from mqttclient

• Topic (c) Topic used by subscribemqtt

• Result Object used by subscribemqtt

Effect

• Remove the subscription for the Result object. Other subscriptions (also for the same
topic) with different result objects remain active.

• Result is not changed but only used to identify the subscription.

Return value (u08)

• 0u08 Success

• 1u08 Error

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 206 of 247

Definition

• publishmqtt(Handle, Topic, QualityOfService, Retain, Object, Size)

Arguments

• Handle (u08) Connection handle from mqttclient

• Topic (c) Topic without wildcards

• QualityOfService (u08) see subscribemqtt

• Retain (b01)

• Objekt (b01, b02, b04, u08, s08, u16, s16, f16, u24, u32, s32, f32, u64, s64, c)

• Size (u16) Anzahl der Bytes, die gesendet werden sollen

Effect

• Send Object top the MQTT broker.

• The payload contains the raw data of object, optionally truncated to Size.

• Size is the number ob bytes to be sent. If Size == 0u16, numerical objects are sent in-total,
String objects are truncated to the actual length of the string (size(Object)).

• Retain notifies the broker to store the message and automatically send it to new sub-
scribers of a matching topic.

Return value (u08)

• 0u08 Success

• 1u08 Error

Example

The integrated MQTT-Broker is enabled. Group address writes shall be forwarded
to an MQTT topic.

uMqttHandleEibPC = mqttclient($localhost$, 1883u16, AUS, $eibpc$, $secret$,
TLS_IGNORE_CERT, $$,$$,$$)

if eventwrite("TV-13/1/8") and "TV-13/1/8"==1b01 then {

 publishmqtt(uMqttHandleEibPC, $cmnd/tv/Power$, 0, 0b01, ON, 0u16);

} endif

if eventwrite("TV-13/1/8") and "TV-13/1/8"==0b01 then {

 publishmqtt(uMqttHandleEibPC, $cmnd/tv/Power$, 0, 0b01, OFF, 0u16);

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 207 of 247

Visualization

Switches

Button pressed (global)

Button pressed (page-dependent)

To be able to use the web visualization of the EibPC, you must activate the NP option in the EibPC.
The unlock code is always bound to the serial number of the device and is not transferable to other
devices.

The following functions are used to access visualization elements.

Visualization elements are divided into global and page-related elements (see p. 18).

Visualizations created via Visu always use page-related elements, if available. How to create a web
visualization in Expert itself is described in Visualization in Expert (p. 44).

Definition

● Function button(id)

● Identical to function webbutton of former releases.

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

Effect

● By operating the button of a web button element (e.g. button or shifter) with the id, the
function assumes a value not equal to zero for the duration of one processing pass, and
zero in all other cases.

● For a button element, the return value when operated is 1.

● For a shifter element, the return value when operated is 1, 2, 3 or 4 (u08) depending on the
actually operated element of the web button. The return values refer to the order of the but-
tons (from left to right).

Return value

● Data type u08, values 0,1,2,3,4

Definition

● Function pbutton(id,page_id)

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

● Argument page_id of data type u08. This argument must not change at the runtime of the
program.

Effect

● By operating the button of a web button element that refers to a page (e.g. pbutton or
pshifter) with the id on the web page of page_id, the function assumes a value not equal to
zero for the duration of one processing pass, and zero in all other cases.

● For a pbutton element, the return value when operated is 1.

● For a pshifter element, the return value when operated is 1, 2, 3 or 4 (u08) depending on
the actually operated element of the web button. The return values refer to the order of the
buttons (from left to right).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 208 of 247

Button with selection (global)

Button with selection (global)

Definition

● Function mbutton(id, selection)

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

● Argument selection of data type u08

Effect

● By operating the button of a multi button element and the given selection with index selec-
tion (e.g. mbutton or mshifter) with the id, the function assumes a value not equal to zero
for the duration of one processing pass, and zero in all other cases.

● For a mbutton element, the return value when operated is 1.

● For a mshifter element, the return value when operated is 1, 2, 3 or 4 (u08) depending on
the actually operated element of the web button. The return values refer to the order of the
buttons (from left to right).

Return value

● Data type u08, values 0,1,2,3,4.

Definition

● Function mpbutton(id, selection, page_id)

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

● Argument page_id of data type u08. This argument must not change at the runtime of the
program.

● Argument selection of data type u08.

Effect

● By pressing the button of a multi button element that refers to a page and the given selec -
tion with index selection (e.g. mpbutton or mpshifter) with the id, the function returns 1 for a
single cycle. When the selected entry is changed to selection, it returns 255. Otherwise, it
returns zero.

● For a mpbutton element, the return value when operated is 1.

● For a mpshifter element, the return value when operated is 1, 2, 3 or 4 (u08) depending on
the actually operated element of the web button. The return values refer to the order of the
buttons (from left to right).

Return value

● Data type u08, values 0,1,2,3,4.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 209 of 247

Change switch (global) Definition

● display(id, text, icon, state, style, [mbutton])

● webdisplay(id, text, icon, state, style, [mbutton])

Arguments

● Arguments id, icon, state, style and mbutton of data type u08

● Argument text of arbitrary data type

Effect

● The function addresses the web button (button or shifter). If there are multiple web buttons
with id, they all will be addressed.

● With the optional argument mbutton the list of the drop-down menu can be changed.

● Calling this function sets the icon of the web element with id to the symbol defined by icon
(data type u08). Possible images are listed in 3 (page 86)

● The argument text denominates an arbitrary variable the value of which, converted to a
character string, is displayed in the variable text line of the web element.

● Every icon has at least the states ACTIVE (==1), INACTIVE (==2), DARKRED (==0) and
BRIGHTRED (==9). One of these states can be submitted as the argument state. For an
overview of the possible states see 2 (page 86).

● The text to be displayed can be represented in the stylesGREY (==0), GREEN (==1),
BLINKRED(==2) and BLINKBLUE (==3).

Return value

● none

Example show current time

A button element shall display the current time.

Implementation in the user program:
[WebServer]

button(ClockWebID)[CLOCK]$Uhrzeit$2

[EibPC]

ClockWebID=0

if stime(0) then webdisplay(ClockWebID,settime(),CLOCK,INACTIVE,GREY) endif

Note:

1. The data type of the return value of settime() is t24. In this case, it is converted to a read-
able character string of the notation „Fr. 12:33:55“.

2. You can access to variables defined in the section [EibPC]. But consider, the webserver
evaluates the variable statically. When the variable ClockWebID is changing during run-
time, the index ClockWebID will still use its initial value, which is 0.

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 210 of 247

Change switch (page-dependant) Definition

● Function pdisplay(id, text, icon, state, style, page_id, [mbutton])

Arguments

● Arguments id, icon, state, style and page_id of data type u08

● Argument text of arbitrary data type

Effect

● The function addresses the web button that refers to a page (pbutton or pshifter). If there
are multiple web buttons with id on the web page of page_id, they all will be addressed.

● By means of the optional argument mbutton, the displayed selection of the drop-down box
can be changed.

● At function plink this argument specifies the jump index.

● Calling this function sets the icon of the web element with id to the symbol defined by icon
(data type u08). Possible images are shown in 3.

● The argument text denotes an arbitrary variable the value of which, converted to a charac-
ter string, is displayed in the variable text line of the web element.

● At function link this argument specifies the new link.

● Every icon has at least the states ACTIVE (==1), INACTIVE (==2), DARKRED (==0) and
BRIGHTRED (==9). One of these states can be submitted as the argument state. For an
overview of the possible states see 2 (page 86).

● The text to be displayed can be represented in the styles GREY (==0), GREEN (==1),
BLINKRED(==2) and BLINKBLUE (==3).

Return value

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 211 of 247

Slider

Get value (global)

Get value (page-dependant)

Get value of extended Slider (global)

Get value of extended Slider (page-

dependant)

Definition

● Function getslider(id)

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

Effect

● The function addresses the slider and returns its position (0 to 255). If there are multiple
occurrences of id, all elements of this id are addressed.

Return value

● Data type u08

Definition

● Function getpslider(id, page_id)

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

● Argument page_id of data type u08. This argument must not change at the runtime of the
program.

Effect

● The function addresses the pslider that refers to a page and returns its position (0 to 255).
If there are multiple occurrences of id, all elements of this id on the web page with page_id
are addressed.

Return value

● Data type u08

Definition

● Function geteslider(id)

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

Effect

● The function addresses the eslider and returns its position (0 to 255). If there are multiple
occurrences of id, all elements of this id are addressed.

Return value

● Data type f32

Definition

● Function getpeslider(id, page_id)

Arguments

● Argument id of data type u08. This argument must not change at the runtime of the pro-
gram.

● Argument page_id of data type u08. This argument must not change at the runtime of the
program.

Effect

● The function addresses the peslider that refers to a page and returns its position (0 to 255).
If there are multiple occurrences of id, all elements of this id on the web page with page_id
are addressed.

Return value

● Data type f32

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 212 of 247

Set slider value (global)

Set slider value (page-dependant)

Set extended slider value (global)

Definition

● Function setslider(id, value, icon, state)

Arguments

● All arguments of data type u08

Effect

● The function addresses the slider and sets its value to value. If there are multiple occur-
rences of id, all elements of this id are addressed.

● A call of the function sets the icon to the symbol with the number icon. Possible symbols
are shown in 3 (page 86) lists the assignment.

● Every icon has at least the states ACTIVE (==1), INACTIVE (==2), DARKRED (==0) and
BRIGHTRED (==9). One of these states can be set in the argument state. 2 (page 68) pro-
vides an overview over all possible states.

Return value

● none

Definition

● Function setpslider(id, value, icon, state page_id)

Arguments

● All arguments of data type u08

Effect

● The function addresses the pslider that refers to a page at the id on page page_id and sets
it to the value value. If there are multiple occurrences of id, all elements of this id on the
web page with page_id are addressed.

● A call of the function sets the icon to the symbol with the number icon. Possible symbols
are shown in 3 (page 86) lists the assignment.

● Every icon has at least the states ACTIVE (==1), INACTIVE (==2), DARKRED (==0) and
BRIGHTRED (==9). One of these states can be set in the argument state. 2 (page 68) pro-
vides an overview over all possible states.

Return value

● none

Definition

● Function seteslider(id, value, icon, state)

Arguments

● All arguments of data type u08

Effect

● The function addresses the eslider and sets its value to value. If there are multiple occur-
rences of id, all elements of this id are addressed.

● A call of the function sets the icon to the symbol with the number icon. Possible symbols
are shown in 3 (page 86) lists the assignment.

● Every icon has at least the states ACTIVE (==1), INACTIVE (==2), DARKRED (==0) and
BRIGHTRED (==9). One of these states can be set in the argument state. 2 (page 68) pro-
vides an overview over all possible states.

Return value

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 213 of 247

Set extended slider value (page-de-

pendant)

Definition

● Function setpeslider(id, value, icon, state page_id)

Arguments

● All arguments of data type u08

Effect

● The function addresses the peslider that refers to a page at the id on page page_id and
sets it to the value value. If there are multiple occurrences of id, all elements of this id on
the web page with page_id are addressed.

● A call of the function sets the icon to the symbol with the number icon. Possible symbols
are shown in 3 (page 86) lists the assignment.

● Every icon has at least the states ACTIVE (==1), INACTIVE (==2), DARKRED (==0) and
BRIGHTRED (==9). One of these states can be set in the argument state. 2 (page 68) pro-
vides an overview over all possible states.

Return value

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 214 of 247

Pictures Definition

● Function picture(id, label, page_id, www-LINK)

Arguments

● Arguments id and page_id of data type u08

● Argument text of arbitrary data type

● Argument www-LINK of data type c1400

Effect

● The function addresses the picture element. If there are multiple pictures with id on the
web page of page_id, they all will be addressed.

● The argument text denotes an arbitrary variable the value of which, converted to a charac-
ter string, is displayed in the variable text line of the web element.

● The argument www-LINK Valid WWW address (incl..Path and leading http://) to the exter-
nal image specified the new destination. The link is shortened to 479 characters due to
compatibilities restrictions.

Return value

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 215 of 247

Links

External link (page-dependant)

Change link to visu page (page-de-

pendant)

Definition

● Function link(id, text, icon, page_id, website)

Arguments

● Arguments id, icon and page_id of data type u08

● Argument text of arbitrary data type

● Argument website of data type c1400

Effect

● The function addresses the web button that refers to a page (link). If there are multiple web
buttons with id on the web page of page_id, they all will be addressed.

● Calling this function sets the icon of the web element with id to the symbol defined by icon
(data type u08). Possible images are shown in 3 (page 68).

● The argument text denotes an arbitrary variable the value of which, converted to a charac-
ter string, is displayed in the variable text line of the web element.

● Every icon has at least the states ACTIVE (==1), INACTIVE (==2), DARKRED (==0) and
BRIGHTRED (==9). One of these states can be submitted as the argument state. For an
overview of the possible states see 2 (page 68).

● The text to be displayed can be represented in the styles GREY (==0), GREEN (==1),
BLINKRED(==2) and BLINKBLUE (==3).

● The argument website (http address (incl. path and leading http://) of the destination site)
specified the new destination. The link is shortened to 479 characters due to compatibili-
ties restrictions.

Return value

● none

Definition

● Function plink(id, text, icon, page_id, pageDestination)

Arguments

● Arguments id, icon, page_id and pageDestination of data type u08

● Argument text of arbitrary data type

Effect

● The function addresses the web button that refers to a page (plink). If there are multiple
web buttons with id on the web page of page_id, they all will be addressed.

● Calling this function sets the icon of the web element with id to the symbol defined by icon
(data type u08). Possible images are shown in 3 (page 86).

● The argument text denotes an arbitrary variable the value of which, converted to a charac-
ter string, is displayed in the variable text line of the web element.

● The argument pageDestination specified the page id as new destination

Return value

● none

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 216 of 247

Example

Dynamic Change of Web-Links

[WebServer]

page (1) [$Haus$,OG]

plink(2) [INFO] [3] $Zu Seite 3$

picture(3) [DOUBLE,ZOOMGRAF]
($Wetter$,$http://eur.yimg.com/w/wcom/eur_germany_outlook_DE_DE_440_dmy_y.jpg$)

link(4) [BLIND] [$http://eur.yimg.com/w/wcom/eur_germany_outlook_DE_DE_440_dmy_y.jpg$] $Mein Link$

page (2) [$Haus$,$Seite2$]

plink(2) [INFO] [3] $Zu Seite 3$

page (3) [$Haus$,$Seite3$]

plink(2) [WEATHER] [1] $Zu Seite 1$

[EibPC]

SprungZiel=3

if after(systemstart(),5000u64) then plink(2,$Doch zu Seite 2$,MONITOR,DISPLAY, 1,SprungZiel) endif

// Achtung: picture verwendet nur die ersten 479 Zeichen für den Link

if after(systemstart(),5000u64) then picture(3,$Neues
Wetter$,1,$http://eur.yimg.com/w/wcom/eur_satintl_440_dmy_y.jpg$) endif

// Achtung: link verwendet nur die ersten 479 Zeichen für den Link

if after(systemstart(),5000u64) then link(4,$Neuer
Link$,MONITOR,DISPLAY,1,$http://eur.yimg.com/w/wcom/eur_satintl_440_dmy_y.jpg$) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 217 of 247

Value Charts

Chart with single graph (global)

Chart with single graph (global)

Definition

● Function chart(id, var, x1, x2)

● compatible with function webchart

Arguments

● Arguments id, var of data type u08

● Arguments x1, x2 of data type c14

Effect

● This function addresses the XY diagram chart. If there are multiple occurrences of id, all el-
ements of this id are addressed.

● When calling this function, the XY diagram of the value var is activated. Values in the
range of 1...30 can be displayed. 0 refers to the value not being displayed, and values
greater than 30 are not permitted and are interpreted like 0. Every call of the function dis -
plays the values beginning from the left side. When the end is reached after 47 function
calls, the values are shifted to the left.

● The labeling of the x-axis is given by the arguments x1, x2 (data type c14).

Return value

● Data type u08 (internal state of the webchart)

Example display percentage value

In an XY diagram of the web server (element chart), a percentage shall be displayed.

Implementation in the user program:

[WebServer]

chart(ChartWebID)[$0%$,$50%$,$100%$]

[EibPC]

PercentageValue='1/3/5'u08

ChartWebID=0

if stime(0) then\\
webchart(ChartWebID,convert(convert(PercentageValue,0f32)/8.5f32,0), nowc14,$-47min$c14) endif

Definition

● Function pchart(id, var, x1, x2, page_id)

Arguments

● Arguments id, var, page_id of data type u08

● Arguments x1, x2 of data type c14

Effect

● This function addresses the XY diagram chart. If there are multiple occurrences of id, all el-
ements of this id on the web page of page_id are addressed.

● When calling this function, the XY diagram of the value var is activated. Values in the
range of 1...30 can be displayed. 0 refers to the value not being displayed, and values
greater than 30 are not permitted and are interpreted like 0. Every call of the function dis -
plays the values beginning from the left side. When the end is reached after 47 function
calls, the values are shifted to the left.

● The labeling of the x-axis is given by the arguments x1, x2 (data type c14).

Return value

● Data type u08 (internal state of the webchart).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 218 of 247

Chart with up to four graphs (global)

Chart with up to four graphs (page-

dependant)

Definition

● Function mchart(id, x, y, index)

Arguments

● Arguments id, index of data type u08

● Arguments x, y of data type f16

Effect

● This function addresses the element mchartf of the given id. If there are multiple occur-
rences of id, all elements of this id are addressed.

● One mchart displays four different graphs. index (0,1,2,3) defines the graph to be ad-
dressed.

● Up to 48 values are stored. If more than 48 values are stored in the same index of mchart,
the value stored in the first location is lost.

● The placement of the values in the graph is performed by the specification of the pairs of
variates.

● The labeling is generated automatically.

Return value

● u08 (internal state).

Definition

● Function mpchart(id, x, y, index, page_id)

Arguments

● Arguments id, page_id, index of data type u08

● Arguments x, y of data type f16

Effect

● This function addresses the element mpchart that refers to a page of the given id. If there
are multiple occurrences of id, all elements of this id are addressed.

● One mpchart displays four different graphs. index (0,1,2,3) defines the graph to be ad-
dressed.

● Up to 48 values are stored. If more than 48 values are stored in the same index of
mpchart, the value stored in the first location is lost.

● The placement of the values in the graph is performed by the specification of the pairs of
variates.

● The labeling is generated automatically.

Return value

● u08 (internal state).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 219 of 247

TimeCharts

Configure TimeBuiffer

Store value

Clear all values

Store TimeBuffer

Definition

● Function timebufferconfig(ChartBufferID, MemTyp, Laenge, DataTyp)

Arguments

● ID of data type u08

● MemTyp Memory Type, with "0" ring memory and "1" represents a linear memory.

● Length of the data in the puffer. Maximum 65535 records with max. 4 bytes in length. The
data type has to be u16.

● The memory is of data type DataTyp of the input object.

Effect

● There is a pair of values buffer is created or configured here. It can be set using the mem-

ory type, if this becomes full after filling with the values or if the oldest value is discarded.

● CAUTION: The EibPC has a RAM of 64MB, of which about 40 MB can be used by the
user maximum.

To ensure proper operation, the buffer and arts must be sized so that the memory of the
EibPC is not overloaded. Using the function to buffer 255 for storing history data can be
defined. The following applies for the necessary storage capacity = (number of values) * 12
Thus, for example, has a buffer with 65000 values about 780 kB.

● You can store them in the Flash buffer at any time, so when you restart the values are not
lost, see timebufferstore and timebufferread.

Return value

● Values: 0 success, 1 Error: exceeded maximum number of time buffers, 2 Error: time buf-
fer already defined.

Definition

● Function timebufferadd(ChartBufferID, Daten)

Arguments

● ID of data type u08

● Data Value (max 32 bits), which has to be inserted into the memory at the end.

Effect

● Append a new value to the time buffer with the current time

Return value

● 0 success, 1 error

Definition

● Function timebufferclear(ChartBufferID)

Arguments

● ChartBufferID of data type u08

Effect

● Delete the current time buffer (in the memory and, if necessary, on the flash, if existing)

Return value

● Level of the time buffer of the data type u16

Example

if systemstart() then timebufferclear(2) endif

Definition

● Function timebufferstore(ChartBufferID)

Arguments

● ChartBufferID of data type u08

Effect

● It is permanently stored in a flash buffer.

Return value

● 0 success, 1 error

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 220 of 247

Read TimeBuffer from flash

Filling level

Get value

Definition

● Function timebufferread(ChartBufferID)

Arguments

● ChartBufferID of data type u08

Effect

● A buffer is selected from the Flasch.

Return value

● 0 success, 1 error, 2 ongoing processing, data type u08

Definition

● Function timebuffersize(ChartBufferID)

Arguments

● ChartBufferID of data type u08

Effect

● Show the current level of the time buffer.

Return value

● Level of the time buffer of data type u16

Definition

● Function timebuffervalue(ChartBufferID, utcZeit,Data, utcZeitWert)

Arguments

● ID of data type u08

● utcZeit of data type u64, which is indicated by the time stamp which is greater than or
equal to the time of the next data point in the time series.

● Data Value (max 32 bits), which should be inserted into the memory at the end. The func-
tion changes the value of this argument to the stored value at the time when it is called.
The data type must match the data type of the timebuffer (timebufferconfig).

● utcZeitWert The exact time of the recording time of the Data value. The function changes
the value of this argument to the value when it is called

Effect

● A value pair is searched for in the time buffer.

Return value

● 0 success, 1 error, 2 persistent processing.

Example: Reading values

A timebuffer has f16 data types and records since 1.1.2016. The value in the time buffer at the time
12:00:00 on 2.1.2016 daily should be read at 9:30:00. If a value is present in the buffer written to the
buffer with plus or minus one second at this time with timebufferadd, this value is to be output to the
GA '1/2/3'f16.

uBf=0

timebufferconfig(uBf,0,2500u16,0f16)

// requested Time

uTime=utc($2016-01-02 12:00:00$)

fVal=0f16

uSampleTime=0u64

uRet=3

if htime(9,30,00) then {

 uRet=timebuffervalue(uBf,uTime,fVal,uSampleTime);

} endif

if uRet==0 then {

 if hysteresis(uSampleTime, uTime-1000u64,uTime+1000u64) then {

 write('1/2/3'f16, fVal) ;

 } endif

} endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 221 of 247

Change time range shown in

TimeChart

Change position interval chown in

TimeChart

Definition

● Function mtimechartpos(TimeChartID,ChartIdx,ChartBuffer,StartPos,EndPos)

Arguments

● TimeChartID of datatyp u08

● ChartIdx Index of charts (0..3)

● ChartBuffer Handle to the time buffer to be displayed by the web element. The Webele-
ment has to be configured accordingly.

● StartPos Starting position of the display

● EndPos Ending position of the display

Effect

● Specify the displayed portion of a time buffer for the web element.

Return value

● none

Definition

● Function mtimechart(TimeChartID,ChartIdx,ChartBuffer,StartZeit,EndZeit)

Arguments

● TimeChartID of Datatyp u08

● ChartIdx-Index of charts (0..3)

● ChartBuffer Handle to the time buffer to be displayed by the web element. The Webele-

ment has to be configured accordingly.

● StartZeit Starting position of the display used as UTC Time-Tics

● EndZeit Ending position of the display used as UTC Time-Tics

Effect

● Specify the displayed portion of a time buffer for the web element.

Return value

● no

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Expert Functions S. 222 of 247

Inputs

Output

Definition

● Funkcion webinput(ID)

Arguments

● ID of Webinput element data type u08

Effect

● reads out the webinput field and sends the result to the return value.

● Webinput elements are all globally

Return value

● string c1400 as result

Definition

● Function weboutput(ID,Data)

Argumente

● ID of Webinput element data type u08

● Data to show at weboutput field

Wirkung

● sends the string to the corresponding weboutput field in the webserver

● Weboutput elements are all globally

Return value

● none

WebServer]

page(1)[$Enertex$,$Webserver$]

webinput(1)[INFO] $Eingabe hier -> Ausgabe in Outputfeldern$

weboutput(2)[SINGLE,ICON]

[EibPC]

inputstring=webinput(1)

if change(inputstring) then weboutput(2,inputstring) endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Macros S. 223 of 247

Macros

Definition

A macro starts with :begin

... ends with :end

With macros, also named functional blocks, programming the EibPC is

• substantially simplified for the beginner and

• faster for the experienced user. The user can extract code fragments of program parts he
repeatedly uses into a library of his own and hence re-use the programming in different
projects at any time.

• The macro-wizard guides you if you parametrize a macro. This means dialogs with expla-
nation on every arguments are given by EibStudio. If you change any argument later on,
again the wizards can be opened and help you re-parametrizing the macro.

• You can use a macro guided by the macro-assistant or as a “normal function” in your appli -
cation program. In this case the assistant is not available.

A macro is (a part of) a user program which is separated out into a library. As an independent part of
another user program, these macros can be integrated into other projects. Within the macro, you can
define various inputs (arguments) containing project-specific data.

Most conveniently, the programming of macros can be explained by means of an example. You have
programmed the double occupancy of a KNX button: Pressing the button sends an ON telegram to
the address 0/0/1. If the button is pressed twice within 800ms, the EibPC shall send an ON telegram
to the address 3/4/6, if it is pressed only once, it shall send an ON telegram to the address 3/4/5: The
following user program arises:

DoubleClick=0

if event('0/0/1'b01) and ('0/0/1'b01==EIN) then DoubleClick=DoubleClick+1 endif

if after(DoubleClick==1, 800u64) then write('3/4/5'b01, EIN) endif

if after(DoubleClick==1, 800u64) and DoubleClick==2 then write('3/4/6'b01, EIN) endif

if after(DoubleClick==1, 1000u64) then DoubleClick=0 endif

To transfer this functionality to additional buttons and group addresses, you can change the text by
way of copy & paste in the text editor of the EibStudio.

However, this method possibly may become error-prone.

With a macro your are capable of creating templates in such situations which make programming
easy. To this end, you create a new text file (ending „.lib“) and write now:

:begin DoubleClick(Name,ButtonGA,ButtonValueClick1GA,Click1Value,Click2GA,Click2Value)

Name^DoubleClick=0

if event(ButtonGA) and (ButtonGA==ButtonValue) then Name^DoubleClick=Name^DoubleClick+1 endif

if after(Name^DoubleClick==1, 800u64) then write(Klick1GA,Klick1Wert) endif

if after(Name^DoubleClick==1, 800u64) and Name^DoubleClick==2 then write(Klick2GA,Klick2Wert) endif

if after(Name^DoubleClick==1, 1000u64) then Name^DoubleClick=0 endif

:end

A macro starts with the keyword :begin and ends with :end. The definition itself is the name of the
macro, followed by comma-separated arguments which are confined by parentheses, and is posi -
tioned directly after :begin.

The arguments of the macro are used as text replacements in the macro code. The syntax is exactly
the same as that of the “normal” user program. The code generated from the macros as it were from
text templates is compiled together with the other program code. You can look at your macro code
generated by the compiler in the file „tmpMacroOut.txt” in the working directory of the EibStudio.

If the above macro is saved e.g. as myMakros.lib, the “double-click” on a KNX button is simplified:

DoubleClick(Basement,'0/0/1'b01,ON,'3/4/5'b01,ON,'3/4/6'b01,ON)

Now the compiler writes in our example „tmpMacroOut.txt“ (in the working directory of the EibStudio):

BasementDoubleClick=0

if event('0/0/1'b01) and ('0/0/1'b01==EIN) then BasementDoubleClick=BasementDoubleClick+1 endif

if after(BasementDoubleClick==1, 800u64) then write('3/4/5'b01,EIN) endif

if after(BasementDoubleClick==1, 800u64) and BasementDoubleClick==2 then write('3/4/6'b01,EIN) endif

if after(BasementDoubleClick==1, 1000u64) then BasementDoubleClick=0 endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Macros S. 224 of 247

Special characters

Runtime errors and syn-

tax errors

Macro wizard

You can generate the description by

yourself with “:info”.

Each description of the arguments is

enclosed by two $ characters.

Local Variables

The “^” character is a special character at replacing text. By means of this character, the text re-
placement can be extended in such a way that variables comprising two words are generated. At
this, the „^“ character is deleted. The same effect is achieved by the „_“ character, whereas this char -
acter is not deleted. By this procedure, variables can be generated in macros (indirectly), which are
as it were “encapsulated” due to the naming.

That way you now can “encapsulate” variables similarly to object-oriented programming languages.
In the example, the variable „DoubleClick” is used repeatedly. If not every macro had its “own” dou-
ble-click variable, the program would generate a faulty behavior.

Arguments are only replaced within strings if they are surrounded by separators. If a macro with ar-
gument

:begin stringTest(arg)

is used like in
stringTest(Parameter)

the argument is replaced as in the following table:

$ arg $ <space>Parameter<space>

 $-arg+$ -Parameter+

$_arg_$ _Parameter_

$^arg^$ Parameter

$Text arg$ Text arg

$Text arg^$ Text Parameter

$Text ^arg^$ Text Parameter

Runtime errors or syntax errors due to the erroneous use of e.g. group address assignments first oc-
cur at the “expansion” of the macro.

You can document your macros directly in the source code for the application. For this, the keyword
:info exists. At the first position after the keyword the description of the function is located, followed
by a description of each argument. The descriptions are enclosed by two “$” character.

:info $With this function block, you can realize a double-click on a button:\\

 If you press the button twice within 0.8 seconds, another function is triggered than if you press once.\\

 You can control both actions by this function block macro$\\

 $Name of the button (for the purpose of unambiguousness)$\\

 $Group address to which the button sends values$\\

 $The value sent by the button (e.g. ON or OFF)$\\

 $Group address for a telegram at single-click$\\

 $Value for the telegram at single-click (e.g. ON or OFF or 23%)$\\

 $Group address for a telegram at double-click$\\

 $Value for the telegram at double-click (e.g. ON or OFF or 23%)$

In order to use a the wizard or re-parametrize your macros, these have to be coded in the [Macros]

section.

Macros can define local variables, which are used in a local context of the macro only. If a macro is
expanded serveral times, each of the local variables are used separately in each expansion of the
macro. A local variable is defined with the :var VARNAME@. Note, the @-character at the end of the
name is mandatory, whereas VARNAME can be a valid variable name (combination of letters and
numbers and “_” characters).

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Macros S. 225 of 247

Return Values

You can define as many local

varoables as you like, but the mem-

ory usage will be increased

empty line before :end means no re-

turn value (if :return is not defined)

Use it as built-in

Each macro has an return value. Either it is defined with the macro command line :return Expression

or if not defined it will be the last line before the :end command.

If we want to define a function cosh  x = ex− e−x

2 we can define the following macro

:begin cosh(x)

:info Calculates the cosh-function

:var sum@

:var p_ex@

:var m_ex@

p_ex@=exp(x)

m_ex@=-exp(-x)

sum@=p_ex@+m_ex@

:return sum@ / 2.f32

:end

Of course, in this case the local variables sum@, p_ex@ and m_ex@ are not really necessary and
we could code instead:

:begin cosh(x)

:info Calculates the cosh-function

:return (exp(x)-exp(-x))/2f32

:end

Additionally the return command could be left (due to compatibility reasons to older macros), so the
code

:begin cosh(x)

:info Calculates the cosh-function

(exp(x)-exp(-x))/2f32

:end

is still equivalent to the code above. If the last line before :end is empty or only spaces, no return
value is defined. So it is a good coding style always to use :return. :return can be placed anywhere in
the code of the macro.

:begin cosh(x)

:info Calculates the cosh-function

(exp(x)-exp(-x))/2f32

:end

Once defined in a macro-lib and added to the [MacroLibs] section, the macro can be used as a built-
in function:

MyVar=cosh(2.3f32)

MyVar2=cosh(cosh('1/3/2'f32)) +cosh('1/3/3'f32) + 32f32

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

Macros S. 226 of 247

Online debugging at runtime

Sending a string with CR to a UDP

client

Empty macro

Efficient for inactive #define of DE-

BUG

Inefficient for inactive #define of DE-

BUG - if query that is used only for

debugging.

... then rather this way..

If variables are to be monitored at runtime, it is recommended to debug with UDP telegrams and a
netcat client (see https://de.wikipedia.org/wiki/Netcat).
The following code is used as a debug macro, assuming that the remote 192.168.1.18 listens on port
9000, e.g. Configured with the Unix tool netcat -ul 9000:

#define DEBUG

#ifdef DEBUG

// Debugger an 192.168.1.118 an Port 9000u16

:begin vmDebugUDP(cString)

:return {

 sendudp(9000u16, 192.168.1.18, cString+tostring(0x0d,0x0a));

}

:end

#endif

#ifndef DEBUG

:begin vmDebugUDP(cString)

:return __EMPTY()

:end

#endif

Depending on whether debugging is enabled with #define DEBUG, a message is sent via UDP. In
the event that the #define DEBUG is not commented, no messages will be sent. A special feature is
the use of __EMPTY(). This statement ensures that the macro does not expand and does not gener-
ate any code.

x=3

If x>5 then {

 x=x*2;

 vmDebugUDP($x ist nun $+convert(x,$$));

} endif

Now with active #define DEBUG via UDP the value is automatically transferred to the receiver at run-
time of the program. If // #define DEBUG is uncommented, the line vmDebugUDP ($ x is now $ +
convert (x, $$)) does not create any overhead.

If, on the other hand, an If statement is just set up for debug purposes, for example:
x=3

If x>5 then {

 vmDebugUDP($x ist nun $+convert(x,$$));

} endif

the compiler does not create any objects for vmDebugUDP, but a "referenced" ifx> 5 object is cre-
ated. This type of automatic debugging should therefore be avoided or completely disabled with #de-
fine in the code:

x=3

#ifdef DEBUG

If x>5 then {

 vmDebugUDP($x ist nun $+convert(x,$$));

} endif

#endif

1159-HB_EibPC2_EN-39.odt, 2023-12-20

Enertex® Bayern GmbH – Ebermannstädter Straße 8 - 91301 Forchheim - mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 227 von 247

Events

Error code explanation

ERR_PROC_OBJECT An object (a function) could not be processed. This can have
several, function-specific causes. Please pay attention to more
error messages.

ERR_PROC_OBJECT_MSG_OUT An output object could not be processed. This can have the
following functions relate to: 1 write access to the KNX bus 1.1
settime 1.2 setdate 1.3 settimedate 1.4 write 1.5 read 1.6 write
response 1.7 scene 1.8 store scene 1.9 callscene 1:10
eibtelegramm 2 Network Functions 2.1 closetcp 2.2 ConnectTCP
2.3 ping 2.4 resolve 2.5 send html mail 2.6 sendmail 2.7 sendtcp
2.8 sendtcparray 2.9 sendudp 2:10 sendudparray 3 RS232
interface 3.1 resetrs232 3.2 sendrs232 4 VPN Server 4.1
closevpnuser openvpnuser 4.2 4.3 4.4 startvpn stopvpn Please
check if an appropriate connection exists

ERR_PROC_REPETITIONS An endless loop has been detected. Processing was therefore
canceled.

ERR_POW_OF_NEG_BASE During the processing of a function pow an error was detected,
the base is negative. The calculation is thereforenot processed.

ERR_LOG_OF_NON_POS_BASE_OR_ARG During the processing of the log function, an error has been
recognized that the base or the argument is not positive. The
calculation is therefore not processed.

ERR_SQRT_OF_NON_POS_ARG The error is sqrt When processing function detected that the
argument is negative. The calculation is therefore carried out.

ERR_ASIN_OF_ARG_OUT_OF_RANGE The error was asin When processing function detected that the
argument outside the interval [-1; +1] is. The calculation is
therefore carried out.

ERR_ACOS_OF_ARG_OUT_OF_RANGE When processing the acos function the error was detected that
the argument outside the interval [-1; +1] is. The calculation is
therefore carried out.

ERR_DIVISION_BY_ZERO During processing of a division of the error has been detected,
the divisor is equal to 0. The calculation is therefore carried out.

ERR_EIBNET_IP_SETSOCKOPT_0 It is an error in the preparation of the compound occurred to a
KNXnet / IP interface.

ERR_EIBNET_IP_SETSOCKOPT_1 s.a.

ERR_EIBNET_IP_SETSOCKOPT_2 s.a.

ERR_EIBNET_IP_SENDTO_0 An error has occurred while sending a message to a KNXnet / IP
interface.

ERR_EIBNET_IP_SENDTO_1 s.a.

ERR_EIBNET_IP_SENDTO_2 s.a.

ERR_EIBNET_IP_SENDTO_3 s.a.

ERR_EIBNET_IP_SENDTO_4 s.a.

ERR_EIBNET_IP_SENDTO_5 s.a.

ERR_EIBNET_IP_TIMEOUT_SEARCH There could be found no KNXnet / IP interface. Please check
whether an operational KNXnet / IP interface is connected to the
same network as the EibPC.

ERR_EIBNET_IP_DISCONNECT_REQUEST_IN The connection between EibPC and KNXnet / IP interface has
been disconnected.

ERR_EIBNET_IP_DISCONNECT_REQUEST_OUT s.a.

ERR_EIBNET_IP_TIMEOUT_CONNECTIONSTATE_REQUEST s.a.

ERR_EIBNET_IP_E_CONNECTION_ID s.a.

ERR_EIBNET_IP_E_DATA_CONNECTION The KNXnet / IP interface has detected an error connecting to
the EibPC.

ERR_EIBNET_IP_E_KNX_CONNECTION The KNXnet / IP interface has detected an error in the
connection to the KNX bus.

ERR_EIBNET_IP_TUNNELLING_TIMEOUT_0 A message was sent again to KNXnet / IP interface, because an
error has occurred.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 228 von 247

ERR_EIBNET_IP_TUNNELLING_TIMEOUT_1 The connection between EibPC and KNXnet / IP interface has
been disconnected.

ERR_EIBNET_IP_L_DATA_CON It was received for a message sent to this email a confirmation of
the KNXnet / IP interface.

ERR_FT12_LINE_IDLE_TIMEOUT_0 It is an error when connecting to the FT1.2 interface occurred.

ERR_FT12_LINE_IDLE_TIMEOUT_1 s.a.

ERR_FT12_SELECT s.a.

ERR_FT12_INVALID_TELEGRAM s.a.

ERR_FT12_READ s.a.

ERR_FT12_RESET_REQ_IN The connection to FT1.2 interface has been reset.

ERR_FT12_STATUS_REQ_IN It has received a status request from the FT1.2 interface.

ERR_FT12_L_BUSMON_IND It has received a message from the KNX bus via the FT1.2
interface.

ERR_FT12_FIX_LENGTH_END A message from the FT1.2 interface was faulty.

ERR_FT12_FIX_LENGTH_CHECKSUM s.a.

ERR_FT12_VAR_LENGTH_LENGTH_0 s.a.

ERR_FT12_VAR_LENGTH_LENGTH_1 s.a.

ERR_FT12_VAR_LENGTH_START s.a.

ERR_FT12_VAR_LENGTH_CHECKSUM s.a.

ERR_FT12_VAR_LENGTH_END s.a.

ERR_FT12_L_DATA_CON It was received for a message sent to this email a confirmation of
the FT1.2 interface.

ERR_FT12_IN_BUFFER_FULL It is an error when connecting to the FT1.2 interface occurred.

ERR_MEM_OBJECTS_COUNT Obsolete in V3

ERR_MEM_OBJECT_OBJECT_TYPE Obsolete in V3

ERR_MEM_OBJECT_CALC_TYPE Obsolete in V3

ERR_MEM_OBJECT_BIT_LEN Obsolete in V3

ERR_MEM_OBJECT_DATA_SIZE Obsolete in V3

ERR_MEM_OBJECT_NAME Obsolete in V3

ERR_MEM_OBJECT_EXPRESSION Obsolete in V3

ERR_MEM_OBJECT_INPUT_COUNTER_0 Obsolete in V3

ERR_MEM_OBJECT_INPUTS_0 Obsolete in V3

ERR_MEM_OBJECT_DEPENDENCY_COUNTER_0 Obsolete in V3

ERR_MEM_OBJECT_DEPENDENCIES_0 Obsolete in V3

ERR_MEM_OBJECT_DEPENDENCY_COUNTER_1 Obsolete in V3

ERR_MEM_OBJECT_DEPENDENCIES_1 Obsolete in V3

ERR_MEM_OBJECT_NULL Obsolete in V3

ERR_MEM_OBJECT_NO_ERROR Obsolete in V3

ERR_MSGSND_ASYNC_SERIAL_0 An error in the communication with the asynchronous serial user
interface has been determined because an internal queue was
not available. Perhaps the EibPC with the current application
program is temporarily overloaded.

ERR_MSGSND_ASYNC_SERIAL_1 s.a.

ERR_MSGSND_MSGOUT_0 Access to the KNX bus has not been possible because an
internal queue was not available. Perhaps the EibPC with the
current application program is temporarily overloaded.

ERR_MSGSND_MSGOUT_1 s.a.

ERR_MSGSND_MSGOUT_2 s.a.

ERR_MSGSND_MSGOUT_3 s.a.

ERR_MSGSND_MSGOUT_4 s.a.

ERR_MSGSND_MSGOUT_5 s.a.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 229 von 247

ERR_MSGSND_RESOLVE_0 The resolve function could not be executed because an internal
queue was not available. Perhaps the EibPC with the current
application program is temporarily overloaded.

ERR_MSGSND_INTERFACE_IN_0 A received from the KNX bus message could not be passed to
the application program, because an internal queue was not
available. Perhaps the EibPC with the current application
program is temporarily overloaded.

ERR_MSGSND_INTERFACE_IN_1 s.a.

ERR_MSGSND_INTERFACE_IN_2 s.a.

ERR_MSGSND_MAIL_0 An e-mail message could not be sent because an internal queue
was not available. Perhaps the EibPC with the current
application program is temporarily overloaded.

ERR_MSGSND_MAIL_1 s.a.

ERR_MSGSND_TCP_OUT_0 A TCP message could not be sent because an internal queue
was not available. Perhaps the EibPC with the current
application program is temporarily overloaded.

ERR_MSGSND_TCP_OUT_1 A TCP connection could not be established because an internal
queue was not available. Perhaps the EibPC with the current
application program is temporarily overloaded.

ERR_MSGSND_TCP_OUT_2 A TCP connection could not be disconnected because an
internal queue was not available. Perhaps the EibPC with the
current application program is temporarily overloaded.

ERR_MSGSND_TCP_IN_0 A received TCP message could not be passed to the application
program, because an internal queue was not available. Perhaps
the EibPC with the current application program is temporarily
overloaded.

ERR_MSGSND_UDP_OUT_0 A UDP message could not be sent because an internal queue
was not available. Perhaps the EibPC with the current
application program is temporarily overloaded.

ERR_MSGSND_UDP_IN_0 A received UDP message could not be passed to the application
program, because an internal queue was not available. Perhaps
the EibPC with the current application program is temporarily
overloaded.

ERR_MSGSND_PING_0 The ping function could not be executed because an internal
queue was not available. Perhaps the EibPC with the current
application program is temporarily overloaded.

ERR_MSGSND_TCP_OUT_3 A TCP message without zero termination could not be sent
because an internal queue was not available. Perhaps the EibPC
with the current application program is temporarily overloaded.

ERR_MSGSND_UDP_OUT_1 A UDP message without zero termination could not be sent
because an internal queue was not available. Perhaps the EibPC
with the current application program is temporarily overloaded.

ERR_MSGSND_ASYNC_SERIAL_2 An error in the communication with the asynchronous serial user
interface has been determined because an internal queue was
not available. Perhaps the EibPC with the current application
program is temporarily overloaded.

ERR_EXIT_NCONF_0 The application program was terminated. This process was
triggered by an action in EibStudio.

ERR_EXIT_NCONF_1 s.a.

ERR_EXIT_NCONF_2 s.a.

ERR_EXIT_NCONF_3 s.a.

ERR_EXIT_MAIN_0 The application program was terminated due to an internal error.

ERR_EXIT_MAIN_1 The application program was terminated due to an internal error.

ERR_EXIT_MAIN_2 The application program was terminated due to an internal error.

ERR_EXIT_MAIN_3 The application program was terminated due to an internal error.

ERR_EXIT_MAIN_4 The application program was terminated due to an internal error.

ERR_LED_MUTEX_TRYLOCK Obsolete in V3

ERR_READ_GROUP_ADDRESS A group address has been configured with initga, but does not
respond to the read request.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 230 von 247

ERR_ERRNO An internal error has been detected. The type of error can be
more accurately determined by the manufacturer based on the
error code.

ERR_ASYNC_SERIAL_0 There was an error accessing the asynchronous serial user
interface.

ERR_ASYNC_SERIAL_1 s.a.

ERR_ASYNC_SERIAL_2 s.a.

TIMEBUFFER_DATATYPE_ERROR Obsolete in V3

TIMEBUFFER_DATATYPE_ERROR Obsolete in V3

TIMEBUFFER_DATATYPE_ERROR Obsolete in V3

Problems and solutions

Error message Solution

! Default value is too big for given data type in >xy< !
The value must be given with a data type, e.g.
Brightness<2000u16

! Make use of convert-functions:
 Datatypes of parameters are not the same: >Var1+Var2< !

Var3=convert(Var1,Var2) + Var2

Syntax error in line:[17]
 >if (("EntireKitchen-1/1/9"==On) and wtime(23,00,00,00)) <
 Valid until position: STOP--> and wtime(23,00,00,00))

The instruction must be positioned in one line or the line must be
finished with ' \\'.
if and \\
then

 ! Predefined variable cannot be re-defined in >EIN=1b01< ! In the EibParser, variables are predefined to make the
construction of a user program as simple as possible.
The predefined variables are listed in the EibStudio in the right
section of the window.
They cannot be defined again.

Datatypes of parameters are not the same: >sun()==1< ! The return value of the function is binary. A number without the
definition of a data type is always an unsigned 8 bit value. As a
relational operator, a binary value must be given. sun()==1b01

Syntax error in line:[13]
 >a=4,6e1f32<
 Valid until position: STOP--> ,6e1f32

As a decimal point, always “.” has to be used.

Syntax error in line:[21]
 >"Akt1-0/0/5"=after(a,5000u64)<

A direct assignment is only possible for variables, not for
addresses. Writing information to the KNX bus is realized with
the help of the write function. write(„Akt1-0/0/5“, 1b01)

Syntax error in line:[19]
 >if (a==EIN) then write("Akt1-0/0/5",EIN) write("Akt2-
0/0/6",EIN);write("Akt3-0/0/8",EIN); write("Ak4-0/0/7",EIN) endif<

Multiple instructions in an if statement must be separated by “;“.
if(a=EIN) then write(b=EIN); write(c=AUS) endif

Syntax error in line:[26]
 >write(on,ON)<
 data type is unkown in >write(on<

The write function can only affect group addresses (1st
argument), not variables.

Deklaration der Variable muss eindeutig sein in >u=convert(z,r)-
r-e<

Every variable may be declared only once. An additional
declaration produces this error messages.

Wrong data type in >cycle(0.5,5< Only integer values may be entered.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 231 von 247

Licenses

The EibPC² uses Software under various licenses. If required by the respective license, the source code is provided upon request.

Enertex® EibPC²

Betriebssystem: Debian Linux 9: Kernel 4.14.16

EibStudio

Please see HELP → LICENSES for a complete list.

The following libraries are used:

libcurl
COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1996 - 2020, Daniel Stenberg, <daniel@haxx.se>, and many

contributors, see the THANKS file.

All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose

with or without fee is hereby granted, provided that the above copyright

notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN

NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR

OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE

OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not

be used in advertising or otherwise to promote the sale, use or other dealings

in this Software without prior written authorization of the copyright holder.

zlib
(C) 1995-2017 Jean-loup Gailly and Mark Adler

 This software is provided 'as-is', without any express or implied

 warranty. In no event will the authors be held liable for any damages

 arising from the use of this software.

 Permission is granted to anyone to use this software for any purpose,

 including commercial applications, and to alter it and redistribute it

 freely, subject to the following restrictions:

 1. The origin of this software must not be misrepresented; you must not

 claim that you wrote the original software. If you use this software

 in a product, an acknowledgment in the product documentation would be

 appreciated but is not required.

 2. Altered source versions must be plainly marked as such, and must not be

 misrepresented as being the original software.

 3. This notice may not be removed or altered from any source distribution.

 Jean-loup Gailly Mark Adler

 jloup@gzip.org madler@alumni.caltech.edu

If you use the zlib library in a product, we would appreciate *not* receiving

lengthy legal documents to sign. The sources are provided for free but without

warranty of any kind. The library has been entirely written by Jean-loup

Gailly and Mark Adler; it does not include third-party code.

If you redistribute modified sources, we would appreciate that you include in

the file ChangeLog history information documenting your changes. Please read

the FAQ for more information on the distribution of modified source versions.

json-c
Copyright (c) 2009-2012 Eric Haszlakiewicz

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"),

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 232 von 247

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

libmodbus
 GNU LESSER GENERAL PUBLIC LICENSE

 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.

 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

 Everyone is permitted to copy and distribute verbatim copies

 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

 as the successor of the GNU Library Public License, version 2, hence

 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public

Licenses are intended to guarantee your freedom to share and change

free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some

specially designated software packages--typically libraries--of the

Free Software Foundation and other authors who decide to use it. You

can use it too, but we suggest you first think carefully about whether

this license or the ordinary General Public License is the better

strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,

not price. Our General Public Licenses are designed to make sure that

you have the freedom to distribute copies of free software (and charge

for this service if you wish); that you receive source code or can get

it if you want it; that you can change the software and use pieces of

it in new free programs; and that you are informed that you can do

these things.

 To protect your rights, we need to make restrictions that forbid

distributors to deny you these rights or to ask you to surrender these

rights. These restrictions translate to certain responsibilities for

you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis

or for a fee, you must give the recipients all the rights that we gave

you. You must make sure that they, too, receive or can get the source

code. If you link other code with the library, you must provide

complete object files to the recipients, so that they can relink them

with the library after making changes to the library and recompiling

it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the

library, and (2) we offer you this license, which gives you legal

permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that

there is no warranty for the free library. Also, if the library is

modified by someone else and passed on, the recipients should know

that what they have is not the original version, so that the original

author's reputation will not be affected by problems that might be

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 233 von 247

introduced by others.

 Finally, software patents pose a constant threat to the existence of

any free program. We wish to make sure that a company cannot

effectively restrict the users of a free program by obtaining a

restrictive license from a patent holder. Therefore, we insist that

any patent license obtained for a version of the library must be

consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the

ordinary GNU General Public License. This license, the GNU Lesser

General Public License, applies to certain designated libraries, and

is quite different from the ordinary General Public License. We use

this license for certain libraries in order to permit linking those

libraries into non-free programs.

 When a program is linked with a library, whether statically or using

a shared library, the combination of the two is legally speaking a

combined work, a derivative of the original library. The ordinary

General Public License therefore permits such linking only if the

entire combination fits its criteria of freedom. The Lesser General

Public License permits more lax criteria for linking other code with

the library.

 We call this license the "Lesser" General Public License because it

does Less to protect the user's freedom than the ordinary General

Public License. It also provides other free software developers Less

of an advantage over competing non-free programs. These disadvantages

are the reason we use the ordinary General Public License for many

libraries. However, the Lesser license provides advantages in certain

special circumstances.

 For example, on rare occasions, there may be a special need to

encourage the widest possible use of a certain library, so that it becomes

a de-facto standard. To achieve this, non-free programs must be

allowed to use the library. A more frequent case is that a free

library does the same job as widely used non-free libraries. In this

case, there is little to gain by limiting the free library to free

software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free

programs enables a greater number of people to use a large body of

free software. For example, permission to use the GNU C Library in

non-free programs enables many more people to use the whole GNU

operating system, as well as its variant, the GNU/Linux operating

system.

 Although the Lesser General Public License is Less protective of the

users' freedom, it does ensure that the user of a program that is

linked with the Library has the freedom and the wherewithal to run

that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and

modification follow. Pay close attention to the difference between a

"work based on the library" and a "work that uses the library". The

former contains code derived from the library, whereas the latter must

be combined with the library in order to run.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 234 von 247

 GNU LESSER GENERAL PUBLIC LICENSE

 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License Agreement applies to any software library or other

program which contains a notice placed by the copyright holder or

other authorized party saying it may be distributed under the terms of

this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data

prepared so as to be conveniently linked with application programs

(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work

which has been distributed under these terms. A "work based on the

Library" means either the Library or any derivative work under

copyright law: that is to say, a work containing the Library or a

portion of it, either verbatim or with modifications and/or translated

straightforwardly into another language. (Hereinafter, translation is

included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for

making modifications to it. For a library, complete source code means

all the source code for all modules it contains, plus any associated

interface definition files, plus the scripts used to control compilation

and installation of the library.

 Activities other than copying, distribution and modification are not

covered by this License; they are outside its scope. The act of

running a program using the Library is not restricted, and output from

such a program is covered only if its contents constitute a work based

on the Library (independent of the use of the Library in a tool for

writing it). Whether that is true depends on what the Library does

and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's

complete source code as you receive it, in any medium, provided that

you conspicuously and appropriately publish on each copy an

appropriate copyright notice and disclaimer of warranty; keep intact

all the notices that refer to this License and to the absence of any

warranty; and distribute a copy of this License along with the

Library.

 You may charge a fee for the physical act of transferring a copy,

and you may at your option offer warranty protection in exchange for a

fee.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 235 von 247

 2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and

distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices

 stating that you changed the files and the date of any change.

 c) You must cause the whole of the work to be licensed at no

 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a

 table of data to be supplied by an application program that uses

 the facility, other than as an argument passed when the facility

 is invoked, then you must make a good faith effort to ensure that,

 in the event an application does not supply such function or

 table, the facility still operates, and performs whatever part of

 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has

 a purpose that is entirely well-defined independent of the

 application. Therefore, Subsection 2d requires that any

 application-supplied function or table used by this function must

 be optional: if the application does not supply it, the square

 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If

identifiable sections of that work are not derived from the Library,

and can be reasonably considered independent and separate works in

themselves, then this License, and its terms, do not apply to those

sections when you distribute them as separate works. But when you

distribute the same sections as part of a whole which is a work based

on the Library, the distribution of the whole must be on the terms of

this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote

it.

Thus, it is not the intent of this section to claim rights or contest

your rights to work written entirely by you; rather, the intent is to

exercise the right to control the distribution of derivative or

collective works based on the Library.

In addition, mere aggregation of another work not based on the Library

with the Library (or with a work based on the Library) on a volume of

a storage or distribution medium does not bring the other work under

the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public

License instead of this License to a given copy of the Library. To do

this, you must alter all the notices that refer to this License, so

that they refer to the ordinary GNU General Public License, version 2,

instead of to this License. (If a newer version than version 2 of the

ordinary GNU General Public License has appeared, then you can specify

that version instead if you wish.) Do not make any other change in

these notices.

 Once this change is made in a given copy, it is irreversible for

that copy, so the ordinary GNU General Public License applies to all

subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of

the Library into a program that is not a library.

 4. You may copy and distribute the Library (or a portion or

derivative of it, under Section 2) in object code or executable form

under the terms of Sections 1 and 2 above provided that you accompany

it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a

medium customarily used for software interchange.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 236 von 247

 If distribution of object code is made by offering access to copy

from a designated place, then offering equivalent access to copy the

source code from the same place satisfies the requirement to

distribute the source code, even though third parties are not

compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the

Library, but is designed to work with the Library by being compiled or

linked with it, is called a "work that uses the Library". Such a

work, in isolation, is not a derivative work of the Library, and

therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library

creates an executable that is a derivative of the Library (because it

contains portions of the Library), rather than a "work that uses the

library". The executable is therefore covered by this License.

Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file

that is part of the Library, the object code for the work may be a

derivative work of the Library even though the source code is not.

Whether this is true is especially significant if the work can be

linked without the Library, or if the work is itself a library. The

threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data

structure layouts and accessors, and small macros and small inline

functions (ten lines or less in length), then the use of the object

file is unrestricted, regardless of whether it is legally a derivative

work. (Executables containing this object code plus portions of the

Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may

distribute the object code for the work under the terms of Section 6.

Any executables containing that work also fall under Section 6,

whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or

link a "work that uses the Library" with the Library to produce a

work containing portions of the Library, and distribute that work

under terms of your choice, provided that the terms permit

modification of the work for the customer's own use and reverse

engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the

Library is used in it and that the Library and its use are covered by

this License. You must supply a copy of this License. If the work

during execution displays copyright notices, you must include the

copyright notice for the Library among them, as well as a reference

directing the user to the copy of this License. Also, you must do one

of these things:

 a) Accompany the work with the complete corresponding

 machine-readable source code for the Library including whatever

 changes were used in the work (which must be distributed under

 Sections 1 and 2 above); and, if the work is an executable linked

 with the Library, with the complete machine-readable "work that

 uses the Library", as object code and/or source code, so that the

 user can modify the Library and then relink to produce a modified

 executable containing the modified Library. (It is understood

 that the user who changes the contents of definitions files in the

 Library will not necessarily be able to recompile the application

 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the

 Library. A suitable mechanism is one that (1) uses at run time a

 copy of the library already present on the user's computer system,

 rather than copying library functions into the executable, and (2)

 will operate properly with a modified version of the library, if

 the user installs one, as long as the modified version is

 interface-compatible with the version that the work was made with.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 237 von 247

 c) Accompany the work with a written offer, valid for at

 least three years, to give the same user the materials

 specified in Subsection 6a, above, for a charge no more

 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy

 from a designated place, offer equivalent access to copy the above

 specified materials from the same place.

 e) Verify that the user has already received a copy of these

 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the

Library" must include any data and utility programs needed for

reproducing the executable from it. However, as a special exception,

the materials to be distributed need not include anything that is

normally distributed (in either source or binary form) with the major

components (compiler, kernel, and so on) of the operating system on

which the executable runs, unless that component itself accompanies

the executable.

 It may happen that this requirement contradicts the license

restrictions of other proprietary libraries that do not normally

accompany the operating system. Such a contradiction means you cannot

use both them and the Library together in an executable that you

distribute.

 7. You may place library facilities that are a work based on the

Library side-by-side in a single library together with other library

facilities not covered by this License, and distribute such a combined

library, provided that the separate distribution of the work based on

the Library and of the other library facilities is otherwise

permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work

 based on the Library, uncombined with any other library

 facilities. This must be distributed under the terms of the

 Sections above.

 b) Give prominent notice with the combined library of the fact

 that part of it is a work based on the Library, and explaining

 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute

the Library except as expressly provided under this License. Any

attempt otherwise to copy, modify, sublicense, link with, or

distribute the Library is void, and will automatically terminate your

rights under this License. However, parties who have received copies,

or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are

prohibited by law if you do not accept this License. Therefore, by

modifying or distributing the Library (or any work based on the

Library), you indicate your acceptance of this License to do so, and

all its terms and conditions for copying, distributing or modifying

the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the

Library), the recipient automatically receives a license from the

original licensor to copy, distribute, link with or modify the Library

subject to these terms and conditions. You may not impose any further

restrictions on the recipients' exercise of the rights granted herein.

You are not responsible for enforcing compliance by third parties with

this License.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 238 von 247

 11. If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),

conditions are imposed on you (whether by court order, agreement or

otherwise) that contradict the conditions of this License, they do not

excuse you from the conditions of this License. If you cannot

distribute so as to satisfy simultaneously your obligations under this

License and any other pertinent obligations, then as a consequence you

may not distribute the Library at all. For example, if a patent

license would not permit royalty-free redistribution of the Library by

all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to

refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any

particular circumstance, the balance of the section is intended to apply,

and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any

patents or other property right claims or to contest validity of any

such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system which is

implemented by public license practices. Many people have made

generous contributions to the wide range of software distributed

through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing

to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to

be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in

certain countries either by patents or by copyrighted interfaces, the

original copyright holder who places the Library under this License may add

an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus

excluded. In such case, this License incorporates the limitation as if

written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new

versions of the Lesser General Public License from time to time.

Such new versions will be similar in spirit to the present version,

but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library

specifies a version number of this License which applies to it and

"any later version", you have the option of following the terms and

conditions either of that version or of any later version published by

the Free Software Foundation. If the Library does not specify a

license version number, you may choose any version ever published by

the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free

programs whose distribution conditions are incompatible with these,

write to the author to ask for permission. For software which is

copyrighted by the Free Software Foundation, write to the Free

Software Foundation; we sometimes make exceptions for this. Our

decision will be guided by the two goals of preserving the free status

of all derivatives of our free software and of promoting the sharing

and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO

WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR

OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 239 von 247

THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN

WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY

AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU

FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE

LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING

RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A

FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF

SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

 END OF TERMS AND CONDITIONS

libxml
Except where otherwise noted in the source code (e.g. the files hash.c,

list.c and the trio files, which are covered by a similar licence but

with different Copyright notices) all the files are:

 Copyright (C) 1998-2012 Daniel Veillard. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is fur-

nished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FIT-

NESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.

OpenSSL
 LICENSE ISSUES

 ==============

 The OpenSSL toolkit stays under a double license, i.e. both the conditions of

 the OpenSSL License and the original SSLeay license apply to the toolkit.

 See below for the actual license texts.

 OpenSSL License

/* ==

 * Copyright (c) 1998-2019 The OpenSSL Project. All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 *

 * 1. Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

 *

 * 2. Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in

 * the documentation and/or other materials provided with the

 * distribution.

 *

 * 3. All advertising materials mentioning features or use of this

 * software must display the following acknowledgment:

 * "This product includes software developed by the OpenSSL Project

 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

 *

 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to

 * endorse or promote products derived from this software without

 * prior written permission. For written permission, please contact

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 240 von 247

 * openssl-core@openssl.org.

 *

 * 5. Products derived from this software may not be called "OpenSSL"

 * nor may "OpenSSL" appear in their names without prior written

 * permission of the OpenSSL Project.

 *

 * 6. Redistributions of any form whatsoever must retain the following

 * acknowledgment:

 * "This product includes software developed by the OpenSSL Project

 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"

 *

 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY

 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR

 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT

 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,

 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)

 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED

 * OF THE POSSIBILITY OF SUCH DAMAGE.

 * ==

 *

 * This product includes cryptographic software written by Eric Young

 * (eay@cryptsoft.com). This product includes software written by Tim

 * Hudson (tjh@cryptsoft.com).

 *

 */

 Original SSLeay License

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)

 * All rights reserved.

 *

 * This package is an SSL implementation written

 * by Eric Young (eay@cryptsoft.com).

 * The implementation was written so as to conform with Netscapes SSL.

 *

 * This library is free for commercial and non-commercial use as long as

 * the following conditions are aheared to. The following conditions

 * apply to all code found in this distribution, be it the RC4, RSA,

 * lhash, DES, etc., code; not just the SSL code. The SSL documentation

 * included with this distribution is covered by the same copyright terms

 * except that the holder is Tim Hudson (tjh@cryptsoft.com).

 *

 * Copyright remains Eric Young's, and as such any Copyright notices in

 * the code are not to be removed.

 * If this package is used in a product, Eric Young should be given attribution

 * as the author of the parts of the library used.

 * This can be in the form of a textual message at program startup or

 * in documentation (online or textual) provided with the package.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 * 1. Redistributions of source code must retain the copyright

 * notice, this list of conditions and the following disclaimer.

 * 2. Redistributions in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in the

 * documentation and/or other materials provided with the distribution.

 * 3. All advertising materials mentioning features or use of this software

 * must display the following acknowledgement:

 * "This product includes cryptographic software written by

 * Eric Young (eay@cryptsoft.com)"

 * The word 'cryptographic' can be left out if the rouines from the library

 * being used are not cryptographic related :-).

 * 4. If you include any Windows specific code (or a derivative thereof) from

 * the apps directory (application code) you must include an acknowledgement:

 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 241 von 247

 *

 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND

 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

 * SUCH DAMAGE.

 *

 * The licence and distribution terms for any publically available version or

 * derivative of this code cannot be changed. i.e. this code cannot simply be

 * copied and put under another distribution licence

 * [including the GNU Public Licence.]

 */

libical
libical is distributed under two licenses.

You may choose the terms of either:

 * The Mozilla Public License (MPL) v2.0

 or

 * The GNU Lesser General Public License (LGPL) v2.1

--

Software distributed under these licenses is distributed on an "AS

IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or

implied. See the License for the specific language governing rights

and limitations under the License.

 The Original Code is libical.

 The Initial Developer of the Original Code is Eric Busboom

 All Rights Reserved.

 Contributor(s): See individual source files.

Mozilla Public License Version 2.0

==================================

1. Definitions

1.1. "Contributor"

 means each individual or legal entity that creates, contributes to

 the creation of, or owns Covered Software.

1.2. "Contributor Version"

 means the combination of the Contributions of others (if any) used

 by a Contributor and that particular Contributor's Contribution.

1.3. "Contribution"

 means Covered Software of a particular Contributor.

1.4. "Covered Software"

 means Source Code Form to which the initial Contributor has attached

 the notice in Exhibit A, the Executable Form of such Source Code

 Form, and Modifications of such Source Code Form, in each case

 including portions thereof.

1.5. "Incompatible With Secondary Licenses"

 means

 (a) that the initial Contributor has attached the notice described

 in Exhibit B to the Covered Software; or

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 242 von 247

 (b) that the Covered Software was made available under the terms of

 version 1.1 or earlier of the License, but not also under the

 terms of a Secondary License.

1.6. "Executable Form"

 means any form of the work other than Source Code Form.

1.7. "Larger Work"

 means a work that combines Covered Software with other material, in

 a separate file or files, that is not Covered Software.

1.8. "License"

 means this document.

1.9. "Licensable"

 means having the right to grant, to the maximum extent possible,

 whether at the time of the initial grant or subsequently, any and

 all of the rights conveyed by this License.

1.10. "Modifications"

 means any of the following:

 (a) any file in Source Code Form that results from an addition to,

 deletion from, or modification of the contents of Covered

 Software; or

 (b) any new file in Source Code Form that contains any Covered

 Software.

1.11. "Patent Claims" of a Contributor

 means any patent claim(s), including without limitation, method,

 process, and apparatus claims, in any patent Licensable by such

 Contributor that would be infringed, but for the grant of the

 License, by the making, using, selling, offering for sale, having

 made, import, or transfer of either its Contributions or its

 Contributor Version.

1.12. "Secondary License"

 means either the GNU General Public License, Version 2.0, the GNU

 Lesser General Public License, Version 2.1, the GNU Affero General

 Public License, Version 3.0, or any later versions of those

 licenses.

1.13. "Source Code Form"

 means the form of the work preferred for making modifications.

1.14. "You" (or "Your")

 means an individual or a legal entity exercising rights under this

 License. For legal entities, "You" includes any entity that

 controls, is controlled by, or is under common control with You. For

 purposes of this definition, "control" means (a) the power, direct

 or indirect, to cause the direction or management of such entity,

 whether by contract or otherwise, or (b) ownership of more than

 fifty percent (50%) of the outstanding shares or beneficial

 ownership of such entity.

2. License Grants and Conditions

2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free,

non-exclusive license:

(a) under intellectual property rights (other than patent or trademark)

 Licensable by such Contributor to use, reproduce, make available,

 modify, display, perform, distribute, and otherwise exploit its

 Contributions, either on an unmodified basis, with Modifications, or

 as part of a Larger Work; and

(b) under Patent Claims of such Contributor to make, use, sell, offer

 for sale, have made, import, and otherwise transfer either its

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 243 von 247

 Contributions or its Contributor Version.

2.2. Effective Date

The licenses granted in Section 2.1 with respect to any Contribution

become effective for each Contribution on the date the Contributor first

distributes such Contribution.

2.3. Limitations on Grant Scope

The licenses granted in this Section 2 are the only rights granted under

this License. No additional rights or licenses will be implied from the

distribution or licensing of Covered Software under this License.

Notwithstanding Section 2.1(b) above, no patent license is granted by a

Contributor:

(a) for any code that a Contributor has removed from Covered Software;

 or

(b) for infringements caused by: (i) Your and any other third party's

 modifications of Covered Software, or (ii) the combination of its

 Contributions with other software (except as part of its Contributor

 Version); or

(c) under Patent Claims infringed by Covered Software in the absence of

 its Contributions.

This License does not grant any rights in the trademarks, service marks,

or logos of any Contributor (except as may be necessary to comply with

the notice requirements in Section 3.4).

2.4. Subsequent Licenses

No Contributor makes additional grants as a result of Your choice to

distribute the Covered Software under a subsequent version of this

License (see Section 10.2) or under the terms of a Secondary License (if

permitted under the terms of Section 3.3).

2.5. Representation

Each Contributor represents that the Contributor believes its

Contributions are its original creation(s) or it has sufficient rights

to grant the rights to its Contributions conveyed by this License.

2.6. Fair Use

This License is not intended to limit any rights You have under

applicable copyright doctrines of fair use, fair dealing, or other

equivalents.

2.7. Conditions

Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted

in Section 2.1.

3. Responsibilities

3.1. Distribution of Source Form

All distribution of Covered Software in Source Code Form, including any

Modifications that You create or to which You contribute, must be under

the terms of this License. You must inform recipients that the Source

Code Form of the Covered Software is governed by the terms of this

License, and how they can obtain a copy of this License. You may not

attempt to alter or restrict the recipients' rights in the Source Code

Form.

3.2. Distribution of Executable Form

If You distribute Covered Software in Executable Form then:

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 244 von 247

(a) such Covered Software must also be made available in Source Code

 Form, as described in Section 3.1, and You must inform recipients of

 the Executable Form how they can obtain a copy of such Source Code

 Form by reasonable means in a timely manner, at a charge no more

 than the cost of distribution to the recipient; and

(b) You may distribute such Executable Form under the terms of this

 License, or sublicense it under different terms, provided that the

 license for the Executable Form does not attempt to limit or alter

 the recipients' rights in the Source Code Form under this License.

3.3. Distribution of a Larger Work

You may create and distribute a Larger Work under terms of Your choice,

provided that You also comply with the requirements of this License for

the Covered Software. If the Larger Work is a combination of Covered

Software with a work governed by one or more Secondary Licenses, and the

Covered Software is not Incompatible With Secondary Licenses, this

License permits You to additionally distribute such Covered Software

under the terms of such Secondary License(s), so that the recipient of

the Larger Work may, at their option, further distribute the Covered

Software under the terms of either this License or such Secondary

License(s).

3.4. Notices

You may not remove or alter the substance of any license notices

(including copyright notices, patent notices, disclaimers of warranty,

or limitations of liability) contained within the Source Code Form of

the Covered Software, except that You may alter any license notices to

the extent required to remedy known factual inaccuracies.

3.5. Application of Additional Terms

You may choose to offer, and to charge a fee for, warranty, support,

indemnity or liability obligations to one or more recipients of Covered

Software. However, You may do so only on Your own behalf, and not on

behalf of any Contributor. You must make it absolutely clear that any

such warranty, support, indemnity, or liability obligation is offered by

You alone, and You hereby agree to indemnify every Contributor for any

liability incurred by such Contributor as a result of warranty, support,

indemnity or liability terms You offer. You may include additional

disclaimers of warranty and limitations of liability specific to any

jurisdiction.

4. Inability to Comply Due to Statute or Regulation

If it is impossible for You to comply with any of the terms of this

License with respect to some or all of the Covered Software due to

statute, judicial order, or regulation then You must: (a) comply with

the terms of this License to the maximum extent possible; and (b)

describe the limitations and the code they affect. Such description must

be placed in a text file included with all distributions of the Covered

Software under this License. Except to the extent prohibited by statute

or regulation, such description must be sufficiently detailed for a

recipient of ordinary skill to be able to understand it.

5. Termination

5.1. The rights granted under this License will terminate automatically

if You fail to comply with any of its terms. However, if You become

compliant, then the rights granted under this License from a particular

Contributor are reinstated (a) provisionally, unless and until such

Contributor explicitly and finally terminates Your grants, and (b) on an

ongoing basis, if such Contributor fails to notify You of the

non-compliance by some reasonable means prior to 60 days after You have

come back into compliance. Moreover, Your grants from a particular

Contributor are reinstated on an ongoing basis if such Contributor

notifies You of the non-compliance by some reasonable means, this is the

first time You have received notice of non-compliance with this License

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 245 von 247

from such Contributor, and You become compliant prior to 30 days after

Your receipt of the notice.

5.2. If You initiate litigation against any entity by asserting a patent

infringement claim (excluding declaratory judgment actions,

counter-claims, and cross-claims) alleging that a Contributor Version

directly or indirectly infringes any patent, then the rights granted to

You by any and all Contributors for the Covered Software under Section

2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all

end user license agreements (excluding distributors and resellers) which

have been validly granted by You or Your distributors under this License

prior to termination shall survive termination.

**

* *

* 6. Disclaimer of Warranty *

* ------------------------- *

* *

* Covered Software is provided under this License on an "as is" *

* basis, without warranty of any kind, either expressed, implied, or *

* statutory, including, without limitation, warranties that the *

* Covered Software is free of defects, merchantable, fit for a *

* particular purpose or non-infringing. The entire risk as to the *

* quality and performance of the Covered Software is with You. *

* Should any Covered Software prove defective in any respect, You *

* (not any Contributor) assume the cost of any necessary servicing, *

* repair, or correction. This disclaimer of warranty constitutes an *

* essential part of this License. No use of any Covered Software is *

* authorized under this License except under this disclaimer. *

* *

**

**

* *

* 7. Limitation of Liability *

* -------------------------- *

* *

* Under no circumstances and under no legal theory, whether tort *

* (including negligence), contract, or otherwise, shall any *

* Contributor, or anyone who distributes Covered Software as *

* permitted above, be liable to You for any direct, indirect, *

* special, incidental, or consequential damages of any character *

* including, without limitation, damages for lost profits, loss of *

* goodwill, work stoppage, computer failure or malfunction, or any *

* and all other commercial damages or losses, even if such party *

* shall have been informed of the possibility of such damages. This *

* limitation of liability shall not apply to liability for death or *

* personal injury resulting from such party's negligence to the *

* extent applicable law prohibits such limitation. Some *

* jurisdictions do not allow the exclusion or limitation of *

* incidental or consequential damages, so this exclusion and *

* limitation may not apply to You. *

* *

**

8. Litigation

Any litigation relating to this License may be brought only in the

courts of a jurisdiction where the defendant maintains its principal

place of business and such litigation shall be governed by laws of that

jurisdiction, without reference to its conflict-of-law provisions.

Nothing in this Section shall prevent a party's ability to bring

cross-claims or counter-claims.

9. Miscellaneous

This License represents the complete agreement concerning the subject

matter hereof. If any provision of this License is held to be

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 246 von 247

unenforceable, such provision shall be reformed only to the extent

necessary to make it enforceable. Any law or regulation which provides

that the language of a contract shall be construed against the drafter

shall not be used to construe this License against a Contributor.

10. Versions of the License

10.1. New Versions

Mozilla Foundation is the license steward. Except as provided in Section

10.3, no one other than the license steward has the right to modify or

publish new versions of this License. Each version will be given a

distinguishing version number.

10.2. Effect of New Versions

You may distribute the Covered Software under the terms of the version

of the License under which You originally received the Covered Software,

or under the terms of any subsequent version published by the license

steward.

10.3. Modified Versions

If you create software not governed by this License, and you want to

create a new license for such software, you may create and use a

modified version of this License if you rename the license and remove

any references to the name of the license steward (except to note that

such modified license differs from this License).

10.4. Distributing Source Code Form that is Incompatible With Secondary

Licenses

If You choose to distribute Source Code Form that is Incompatible With

Secondary Licenses under the terms of this version of the License, the

notice described in Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice

 This Source Code Form is subject to the terms of the Mozilla Public

 License, v. 2.0. If a copy of the MPL was not distributed with this

 file, You can obtain one at https://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular

file, then You may include the notice in a location (such as a LICENSE

file in a relevant directory) where a recipient would be likely to look

for such a notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - "Incompatible With Secondary Licenses" Notice

 This Source Code Form is "Incompatible With Secondary Licenses", as

 defined by the Mozilla Public License, v. 2.0.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

1159-HB_EibPC2_EN-39, 2023-12-20 S. 247 von 247

--

Copyright (c) 2004, 2005 Metaparadigm Pte Ltd

Permission is hereby granted, free of charge, to any person obtaining a

copy of this software and associated documentation files (the "Software"),

to deal in the Software without restriction, including without limitation

the rights to use, copy, modify, merge, publish, distribute, sublicense,

and/or sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included

in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

Enertex® Bayern GmbH – Ebermannstädter Str. 8 - 91301 Forchheim - mail@enertex.de

mailto:mail@enertex.de

	Safety instructions
	License
	Help
	E-Mail
	Support-Export
	Telephone
	KNX-User-Forum
	Videos

	Updates
	Enertex® EibPC²
	Overview
	Summary
	KNX-Functions
	Data logging
	Software

	Commissioning
	Connectors and Control Elements
	Installation
	Integrated KNX interface
	Dedicated KNXnet/IP interface

	Device Start
	Firmware Update
	Factory Reset

	EibStudio Quick Start Guide
	EibStudio
	Installation
	Title Menu
	Projects List
	Projects Directory
	Import EibStudio 3 Project

	Settings
	Configuration Directory

	User Interface
	Navigation
	Extended Navigation
	Property Dialog

	Overview
	Objects
	Import Group Addresses
	Topology
	Internal Variables
	Constants

	Logic
	Definitions
	Aggregated inputs
	Types
	Delete edges
	Convert
	Multiple logics

	Debug-Mode
	Visualization Objects

	Visu
	Elements
	Functions
	User Templates
	Templates
	Access from Logic and Expert

	Expert
	Auto-completion
	Macros
	Custom Visualization
	Access Visu Elements
	Syntax
	Define Variables
	Group Addresses
	if-Clause
	Comments

	Online-Debugging

	Project Settings
	Search EibPC
	Connection to KNX
	Network address
	Name resolving
	Ports
	Date and Time
	Location
	SHUTDOWN Variable
	FTP
	E-Mail
	Backup
	Files
	HTTPS
	VPN
	IDs
	IDs
	Activation codes

	Export and Import
	Debugger
	Group Monitor
	Long Term Buffer
	Events
	Simulation

	Objects
	Data types
	Numbers (Constants)
	Character strings
	IP Address
	Individual Address
	An overview of the data types

	Variables
	Group addresses
	”Manual” Group Addresses
	Initialize Group Addresses

	Evaluation
	Object tree
	Program start
	Assignments
	Variables
	Functions
	Side effects
	Timer
	if-statements
	Nested if-statements
	Timer in then-clause
	else-clause
	Queues
	Asynchronous return values
	Macros
	Recursion

	Visualization
	Viszalization editor
	Password protection
	Elements
	Functions
	Templates

	Visualization in Expert
	Pages
	Placement
	New Page
	Compact mode
	Password protection
	Color scheme
	Placeholder (Compact mode)
	Placeholder
	Separator
	Header
	Footer
	Zoom

	Elements
	Element Definitions
	Switch of single width (global)
	Switch of single width (page-dependent)
	Switch with selection of single width (global)
	Switch with selection of single width (page-dependent)
	Switch of double width (global)
	Switch of double width (page-dependent)
	Switch with selection of double width (global)
	Switch with selection of double width (page-dependent)
	Simple Chart (global)
	Simple Chart (page-dependent)
	Chart with multiple graphs (global)
	Chart with multiple graphs (page-dependant)
	TimeChart (global)
	Color of graphs (page-dependant)
	Picture (page-dependant)
	Simple Slider (global)
	Simple Slider (page-dependant)
	Extended Slider (global)
	Extended Slider (page-dependant)
	Input of text, date, time, color (global)
	Versatile output area (global)
	Internal link (page-dependant)
	External link (page-dependant)
	Embed external Website (global)

	Icons

	Examples
	Logic
	Expert
	Send group telegrams
	Duration of a cycle
	Queue
	Presence state machine
	Presence simulation
	Encoding of c14
	String concatenation with different length
	FTP Data streams
	Use of own Html code and graphics on the Web server
	Visualisation of time series
	Change of the displayed buffer of a mtimechart

	Expert Functions
	Logical operators
	AND
	OR
	Exclusive-OR
	Comparison operators
	Hysteresis
	Inverting
	Shift

	Time
	Set system time
	Send system time
	Set system date
	Send system date
	Set system time and date
	Send system time and date
	Current hour
	Current minute
	Current second
	Change hour
	Change minute
	Change second
	String in Unixtime (UTC)
	Current time Unixtime (UTC)
	Unixtime in String (UTC)
	String in Unix time (local time)
	Unix time in String (local time)

	Date
	Date comparison
	Monthly comparison
	Daily comparison
	Day of week
	Day (relative to) Easter Sunday
	Month (relative to) Easter Sunday

	Shading and the position of the sun
	Day or night
	Azimuth
	Elevation
	Time relative to sunrise/sunset
	Hour of sunrise
	Minute of sunrise
	Hour of sunset
	Hour of sunset

	Timer
	Weekly timer
	Daily timer
	Hourly timer
	Minute timer

	Comparator time switches
	Weekly comparator timer
	Daily comparator timer
	Hourly comparator timer
	Minute comparator timer

	Delays
	Delay
	Delayc
	After
	Afterc
	Cycle timer - cycle

	Remanent memory
	Read from index
	Write at index
	Read variable
	Write variable

	Arithmetic operations
	Absolute value
	Addition
	Arc cosine
	Arc sine
	Arc tangent
	Cosine
	Ceil
	Division
	Average
	Exponential function
	Floor
	Logarithm
	Maximum value
	Minimum value
	Mod
	Multiplication
	Power
	Square root
	Sine
	Subtraction
	Tangent

	Special functions
	Change
	Comobject - communication object
	Convert
	Serial number
	Message log
	Elognum
	Eval
	Processingtime
	System start
	End of program
	Random number
	Passive Mode
	Create KNX telegram

	Lighting scenes
	Scene actuator
	Preset scene
	Store scene
	Call scene

	Strings
	Concatenate
	Find
	Stringcast
	Stringset
	String format
	Split
	Size
	Capacity
	Tostring
	Encode
	Urldecode
	Urlencode
	MD5
	Hash
	Lower case
	Upper case
	Base64 encode
	Base64 decode
	TLS certificates, private keys, root certificates/CA certificates

	Parser
	XML
	JSON

	KNX Telegrams
	write
	read
	event
	eventread
	eventresponse
	eventwrite
	writeresponse
	Init group address

	KNX-Telegram-Routing
	Address
	Readknx
	Readrawknx
	GetAddress
	Gaimage
	Getganame

	Network functions
	UDP
	Receive UDP datagrams
	Send UDP datagrams
	Sendudparray

	TCP server and client
	Server and client
	TCP ports
	Connecttcp
	Closetcp
	Readtcp
	Sendtcp
	Sendtcparray

	Ping
	Resolve Hostname
	Email
	Plain-text email
	HTML mail

	VPN Server
	Startvpn
	Stopvpn
	Getvpnusers
	Openvpnuser
	Closevpnuser

	FTP
	Ftpconfig
	Sendftp
	Ftpstate
	Ftptimeout
	Ftpbuffer
	Flushftp

	HTTP-Requests
	Modbus TCP
	Byte-Order
	Word-Order
	Master
	Read resource
	Write resource
	Slave

	MQTT
	MQTT Broker
	MQTT-Client

	Visualization
	Switches
	Button pressed (global)
	Button pressed (page-dependent)
	Button with selection (global)
	Button with selection (global)
	Change switch (global)
	Change switch (page-dependant)

	Slider
	Get value (global)
	Get value (page-dependant)
	Get value of extended Slider (global)
	Get value of extended Slider (page-dependant)
	Set slider value (global)
	Set slider value (page-dependant)
	Set extended slider value (global)
	Set extended slider value (page-dependant)

	Pictures
	Links
	External link (page-dependant)
	Change link to visu page (page-dependant)

	Value Charts
	Chart with single graph (global)
	Chart with single graph (global)
	Chart with up to four graphs (global)
	Chart with up to four graphs (page-dependant)

	TimeCharts
	Configure TimeBuiffer
	Store value
	Clear all values
	Store TimeBuffer
	Read TimeBuffer from flash
	Filling level
	Get value
	Change time range shown in TimeChart
	Change position interval chown in TimeChart

	Inputs
	Output

	Macros
	Definition
	Special characters
	Runtime errors and syntax errors
	Macro wizard
	Local Variables
	Return Values
	Online debugging at runtime

	Events
	Problems and solutions

	Licenses

